

Journal of Organometallic Chemistry 562 (1998) 229-253

## ansa-Metallocenkomplexe des Typs $(C_{13}H_8-SiR_2-C_9H_{6-n}R'_n)ZrCl_2$ (n = 0, 1; R = Me, Ph, Alkenyl; R' = Alkyl, Alkenyl): Selbstimmobilisierende Katalysatorvorstufen für die Ethylenpolymerisation<sup>1</sup>

Helmut G. Alt\*, Michael Jung

Laboratorium für Anorganische Chemie der Universität Bayreuth, Postfach 10 12 51, D-95440 Bayreuth, Deutschland

Eingegangen am 5 März 1998

#### Abstract

Twenty-four (19 new) *ansa*-metallocene complexes of the type  $(C_{13}H_8-SiR_2-C_9H_{6-n}R'_n)ZrCl_2$  (n = 0, 1; R = Me, Ph, alkenyl; R' = alkyl, alkenyl) have been synthezised, characterized and tested for catalytic ethylene polymerization after activation with methylaluminoxane (MAO). The substituents R in the bridge and the substituents R' in the 3-position of the indenylidene moiety have an influence on the activity of the catalysts and the molecular weights of the formed polymers. The  $\omega$ -alkenyl substituents R and R' allow the copolymerization of the corresponding catalysts with the monomer upon activation to give heterogeneous catalysts by self-immobilization processes.

## Zusammenfassung

Es wurden 24 (19 neue) *ansa*-Metallocenkomplexe des Typs ( $C_{13}H_8$ -SiR<sub>2</sub>- $C_9H_{6-n}R'_n$ )ZrCl<sub>2</sub> ( $_n = 0, 1$ ; R = Me, Ph, Alkenyl; R' = Alkyl, Alkenyl) synthetisiert und charakterisiert. Alle Komplexe eigneten sich nach der Aktivierung mit Methylaluminoxan (MAO) zur katalytischen Polymerisation von Ethylen. Die Substituenten R in der Brücke und die Substituenten R' in der 3-Position der Indenyliden-Einheit üben einen Einfluß auf die Aktivität der jeweiligen Katalysatoren und das Molekulargewicht der dargestellten Polymeren aus.  $\omega$ -Alkenylsubstituenten R und R' ermöglichen die Copolymerisation des jeweiligen Katalysators mit dem Monomeren bei der Aktivierung, wobei durch Selbstimmobilisierung heterogene Katalysatoren entstehen. © 1998 Elsevier Science S.A. All rights reserved.

Schlüsselwörter: Catalysis; Zirconium; Polymerization; Metallocene complexes; Self immobilization

### 1. Einführung

Metallocendichloridkomplexe mit Metallen der 4. Gruppe eignen sich in Verbindung mit Methylalumi-

noxan (MAO) als Katalysatoren für die Polymerisation von  $\alpha$ -Olefinen [1–6]. Bei  $C_1$ -verbrückten Metallocenkomplexen bewirkt der Ersatz des Brückenkohlenstoffatoms durch Silicium oft einen drastischen Anstieg der Katalysatoraktivität. Es interessierte daher die Frage, wie stark die Substituenten R und R' im Komplextyp ( $C_{13}H_8$ –SiR<sub>2</sub>– $C_9H_6_{-n}R'_n$ )ZrCl<sub>2</sub> (<sub>n</sub> = 0, 1; R = Me, Ph, Butenyl; R' = Alkyl, Alkenyl) (vgl. [7]), Einfluß

<sup>\*</sup> Corresponding author. Fax: +49 921 552157.

<sup>&</sup>lt;sup>1</sup> Herrn Professor Dr Dr h. c. mult. Ernst Otto Fischer zum 80. Geburtstag gewidmet (10.11.1998).

<sup>0022-328</sup>X/98/\$19.00 © 1998 Elsevier Science S.A. All rights reserved. PII S 0 0 2 2 - 3 2 8 X ( 9 8 ) 0 0 5 3 8 - 5



R<sup>1</sup>,R<sup>2</sup> = Alkyl, Aryl, Alkenyl

Schema 1. Allgemeine Synthese von Fluorenyldialkylchlorsilanen.

auf die Polymerisationseigenschaften dieser Metallocenkomplexe nehmen, wobei insbesondere der 3-Position des Indenylidenliganden Bedeutung beigemessen wurde. Wir haben bereits früher [8] analoge  $C_1$ -verbrückte Metallocenkomplexe untersucht, so daß entsprechende Vergleichsdaten verfügbar waren.

## 2. Ergebnisse und Diskussion

#### 2.1. Synthese von Fluorenderivaten

Fluorenyldialkylchlorsilane [9] sind durch Umsetzung von Dialkyldichlorsilanen mit Fluorenyllithium darstellbar. Bei einem Überschuß an Dichlorsilan in Pentan als Lösungsmittel wird eine Disubstitution des Silans vermieden (Schema 1).

Die folgenden Fluorenyldialkylchlorsilane 1-4 wurden auf diese Art und Weise dargestellt (Abb. 1, Tabelle 1):

2.2. Synthese Si-verbrückter Ligandenvorstufen des Typs  $C_{13}H_8$ -SiRR'- $C_9H_{7-n}R_n$  (R, R' = Alkyl, Alkenyl, Aryl)

Zur Synthese der Ligandenvorstufen wird das jeweilige Indenyllithiumderivat mit einem der Fluorenyldialkylchlorsilane 1-4 in Ether zur Reaktion gebracht. Man erhält die entsprechenden Tetraorganylsilane in guten Ausbeuten (Schema 2).

Die Si-verbrückten Ligandenvorstufen 5-22 sind in Abb. 2 dargestellt. Die Verbindungen  $14/14^*-16/$  $16^*$  enthalten zwei chirale Zentren und liegen deshalb als Diastereomere vor.

Um 9-Fluorenyl-5-hexenyl-1-indenylmethylsilan 23/ 23\* zu erhalten, müssen zur Aktivierung des Indenyllithiums 10% Hexamethylphosphorsäuretriamid (HMPT) dem Lösungsmittel zugesetzt werden. Die Zugabe von HMPT verursacht eine Steigerung der Polarität des Solvens. Die Doppelbindung im Fünfring des Indenylrestes isomerisiert im Verhältnis 2:1, so daß vier verschiedene Spezies zu erwarten sind (Abb. 3 und 4; Tabelle 2).

#### 2.3. Synthese der Metallocendichloridkomplexe

Ausgehend von den Ligandenvorstufen  $5-23/23^*$ wurden die Metallocendichloridkomplexe 24-44 nach Standardmethoden [9,11] synthetisiert: Dabei wird die Ligandenvorstufe mit zwei Äquivalenten *n*-Butyllithium in Diethylether zum Dianion umgesetzt. In einem zweiten Schritt wird durch Zugabe des Metalltetrachlorids (ZrCl<sub>4</sub> bzw. HfCl<sub>4</sub>) der *ansa*-Metallocendichloridkomplex gebildet (Abb. 5):

Die Abb. 6 und 7 zeigen das <sup>1</sup>H-bzw. <sup>13</sup>C-NMR-Spektrum von **36**. Im <sup>1</sup>H-NMR-Spektrum von **36** sind die einzelnen Signalgruppen gut separiert. Der Butenylrest zeigt das erwartete Kopplungsmuster für ein AB-MXY-Spinsystem. Der AB-Teil, die Methylenprotonen, ist bei  $\delta = 2.78$  ppm zu finden, der Vinylteil bei  $\delta = 5.78$  und 4.98 ppm. Die sich anschließende Methylengruppe erscheint bei  $\delta = 2.29$  ppm. Das Singulett bei  $\delta = 5.77$  ppm entspricht dem Proton des Fünfrings des Indenylidenliganden. Die <sup>1</sup>H-NMR-Signale des Fluorenylidenliganden und der beiden Phenylsubstituenten am Siliciumbrückenatom findet man im Bereich von  $\delta = 6.75-8.33$  ppm.

Abb. 7 zeigt ein *J*-moduliertes <sup>13</sup>C-NMR-Spektrum von **36** in CDCl<sub>3</sub>. C- und CH<sub>2</sub>-Struktureinheiten liefern negative Signale, CH- und CH<sub>3</sub>-Gruppen positive Signale. Die für den Komplex zu erwartenden elf quartären und vierzehn tertiären Kohlenstoffresonanzen, sowie drei Resonanzen für die Methylengruppen ( $\delta = 115.2$ , 34.0 und 27.9 ppm) sind gut zu erkennen. Besondere Aufmerksamkeit verdienen die Resonanzen der an das Silicium gebundenen quartären Kohlenstoffatome der beiden  $\pi$ -Liganden. Mit  $\delta = 62.5$ ppm (Fluorenylidenligand) und  $\delta = 79.5$  ppm sind die Signale im Vergleich zu anderen Komplexen, in denen der Fluorenylligand  $\eta^5$  gebunden ist [12,13], um etwa 30 ppm hochfeldverschoben.



Abb. 1. Dargestellte Fluorenyldialkyl chlorsilane.



| $\mathbf{R}^1 = \mathbf{M}\mathbf{e};$   | $R^2 = Me$ | 5 <sup>[7]</sup> |
|------------------------------------------|------------|------------------|
| $R^1 = Me;$                              | $R^2 = Ph$ | 14/14*           |
| $\mathbf{R}^{1} = \mathbf{P}\mathbf{h};$ | $R^2 = Ph$ | 17               |



| $\mathbf{R}^{1} = \mathbf{M}\mathbf{e};$ | $\mathbf{R}^2 = \mathbf{M}\mathbf{e};$ | $n = 1: 6^{[10]}$        |
|------------------------------------------|----------------------------------------|--------------------------|
| $R^1 = Me;$                              | $R^2 = Me;$                            | $n = 2: 7^{[10]}$        |
| $\mathbf{R}^1 = \mathbf{M}\mathbf{e};$   | $R^2 = Me;$                            | $n = 3: 8^{[10]}$        |
| $\mathbf{R}^{1} = \mathbf{M}\mathbf{e};$ | $R^2 = Me;$                            | n = 4: 9 <sup>[10]</sup> |
| $R^1 = Me;$                              | $\mathbf{R}^2 = \mathbf{P}\mathbf{h};$ | n = 1: 15/15*            |
| $\mathbf{R}^1 = \mathbf{M}\mathbf{e};$   | $R^2 = Ph$ ,                           | n = 4: 16/16*            |
| $\mathbf{R}^{1} = \mathbf{P}\mathbf{h};$ | $R^2 = Ph;$                            | n = 1: 18                |
| $\mathbf{R}^{1} = \mathbf{P}\mathbf{h};$ | $R^2 = Ph;$                            | n = 2: 19                |
| $\mathbf{R}^{1} = \mathbf{P}\mathbf{h};$ | $\mathbf{R}^2 = \mathbf{P}\mathbf{h};$ | n = 3: 20                |
| $\mathbf{R}^{1} = \mathbf{P}\mathbf{h};$ | $R^2 = Ph;$                            | n = 4: <b>21</b>         |
|                                          |                                        |                          |



R = Me: 10 Ph: 22

11



Abb. 2. Übersicht über die dargestellten Ligandenvorstufen.

Tabelle 1 NMR-Daten der Fluorenyldi(alkyl)chlorsilane 1-4

|                         | <sup>1</sup> H-NMR <sup>a)</sup>                                                                                                                                                                                                                                                                                                                                              | <sup>13</sup> C-NMR <sup>a)</sup>                                                                                                                                                                      | <sup>29</sup> Si-NMR <sup>a)</sup> |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Me Si Cl 1              | 7.87 (m, 2H), 7.66 (m, 2H), 7.42-7.29 (4H) <sup>b)</sup> , 4.09 (s, 1H, CH), 0.16 (s, 6H, CH <sub>3</sub> )                                                                                                                                                                                                                                                                   | 142.9, 140.9 ( $C_q$ ), 126.5, 126.3, 126.2,<br>125.6, 124.7, 124.2, 120.2, 120.1<br>(CH), 43.5 (CH), -0.3 (CH <sub>3</sub> )                                                                          | 28.0                               |
| Me Si Cl 2              | 7.81-7.74 $(3H)^{b}$ , 7.45-7.32 $(8H)^{b}$ , 7.14 (m, 1H), 7.02 (m, 1H), 4.28 (s, 1H, CH), 0.23 (s, 3H, CH <sub>3</sub> )                                                                                                                                                                                                                                                    | 142.7, 141.8, 141.0 (C <sub>q</sub> ), 133.8 (CH),<br>133.2 (C <sub>q</sub> ), 130.6, 127.8, 126.4, 126.2,<br>126.1, 126.0, 125.0, 119.9, 119.9, 42.7<br>(CH), -3.7 (CH <sub>3</sub> )                 | 16.7                               |
| Ph-Si<br>Phr-Si<br>Cl 3 | 7.77-7.74 (m, 2H), 7.40-7.15 (16H) <sup>b)</sup> ,<br>4.60 (s, 1H, C <b>H</b> )                                                                                                                                                                                                                                                                                               | 142.2, 141.2 ( $C_q$ ), 134.7 (CH), 131.2 ( $C_q$ ), 130.7, 127.9, 126.3, 126.2, 125.2, 119.9, 41.5 (CH)                                                                                               | 5.7                                |
| Me.SI 4                 | 7.96-7.93 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.5 Hz, 2H),<br>7.78-7.75 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.5 Hz, 2H),<br>7.51-7.39 (4H) <sup>b)</sup> , 5.82 (m, 1H, =CH),<br>5.06 (m, 2H, =CH <sub>2</sub> ), 4.19 (s, 1H, CH),<br>2.05-1.99 (m, 2H, CH <sub>2</sub> ), 1.41-1.32 (4H,<br>CH <sub>2</sub> ), 0.73-0.63 (m, 2H, CH <sub>2</sub> ), 0.24 (s,<br>3H, CH <sub>3</sub> ) | 142.8, 142.7, 140.8 (C <sub>q</sub> ), 138.5 (=CH),<br>126.4, 126.1, 124.7, 120.0 (CH), 114.4<br>(=CH <sub>2</sub> ), 42.6 (CH), 33.1, 31.9, 22.1,<br>15.0 (CH <sub>2</sub> ), -1.8 (CH <sub>3</sub> ) | 28.5                               |

<sup>a)</sup> in CDCl<sub>3</sub> (gesättigte Lösung) bei 25°C ± 1°C. <sup>b)</sup> Als Verschiebungsbereich angegeben wegen Resonanzüberlagerungen.

Tabelle 3 verdeutlicht die starke Hochfeldverschiebung von C(9) in Si-verbrückten Fluorenylkomplexen im Vergleich zu unverbrückten Komplexen. Auch hier muß man, wie bei den  $C_1$ -verbrückten Komplexen [8], davon ausgehen, daß die Pentahaptizität des Fluorenyliden- und des Indenylidenliganden aufgehoben ist. Vielmehr deuten die NMR-spektroskopischen Befunde eher auf eine Trihaptizität beider Liganden hin.

#### 2.4. Synthese von Metallacyclen aus

## $\omega$ -alkenylsubstituierten Metallocendichloridkomplexen

Die Metallacyclen **45**–**47** entstehen, wenn  $\omega$ -alkenylsubstituierte Metallocenkomplexe mit einem milden Hydrierungsmittel, wie Lithiumaluminium-tri-*tert*-butyloxyhydrid in THF, umgesetzt werden. Die Metallocenkomplexe werden dabei monohydriert, so daß ein Derivat des Schwarzschen Reagenz entsteht, das durch eine anschließende intramolekulare Hydrozirconierung den Metallacyclus bildet [14–19] (Schema 3).

Folgende Metallacyclen wurden dargestellt (Abb. 8; Tabelle 4):

## 2.5. Polymerisation von Ethylen

Alle dargestellten Metallocenkomplexe polymerisieren nach der Aktivierung mit Methylaluminoxan (MAO) Ethylen. Eine herausragende Eigenschaft der Metallocenkatalysatoren mit olefinischen Substituenten ist ihre Fähigkeit, sich bei der Polymerisation von  $\alpha$ -Olefinen als Comonomere in die wachsende Polymerkette zu inkorporieren. Die homogenen Metallocenkatalysatoren immobilisieren sich dabei selbst. Die weitere Bildung von Polyolefin wird heterogen katalysiert [20]. Die Polymerkette dient als organischer Träger.

Die Molekulargewichte der Polyethylene, die mit den Si-verbrückten Komplexen 25-30/MAO und 35-40/MAO erhalten wurden, werden in Abb. 9 miteinander verglichen. Mit  $350 \times 10^3-400 \times 10^3$  g mol<sup>-1</sup> sind die Molekulargewichte der von dimethylsilylenverbrückten Komplexen/MAO hergestellten Polyethylene vergleichbar mit den entsprechenden Polyethylenen von  $C_1$ -verbrückten Komplexen/MAO [8]. Diphenylsilylensubstituierte Komplexe erzeugen nach der Aktivierung mit MAO mit  $430 \times 10^3-480 \times 10^3$  g mol<sup>-1</sup> niedrigere Molekulargewichte als entsprechende methylphenylmethylenverbrückte bzw. diphenylmethylenverbrückte Derivate [21,22].

Ein Anstieg des Molekulargewichts bei Substitution beider Methylgruppen durch Phenylgruppen am verbrückenden Siliciumatom ist zwar beobachtbar (etwa 25%), verglichen mit dem starken Effekt bei den  $C_1$ -verbrückten Komplexen (Anstieg des Polymermolekulargewichts um 300–400%) ist der Anstieg jedoch sehr

Tabelle 2 NMR-Daten der Si-verbrückten Ligandenvorstufen **5–23/23\*** 

|               | <sup>1</sup> H-NMR <sup>a)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>13</sup> C-NMR <sup>a)</sup>                                                                                                                                                                                                                                                                                                            | <sup>29</sup> Si-NMR <sup>a</sup> |
|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Me-Si-Me      | 7.99 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.2 Hz, 2H), 7.65-<br>7.53 (4H) <sup>b)</sup> , 7.48-7.30 (5H) <sup>b)</sup> , 7.25 (dt,<br>t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.4 Hz, d, ${}^{4}J({}^{1}H, {}^{1}H)$ 1.2 Hz,<br>1H), 6.99 (dd, ${}^{3}J({}^{1}H, {}^{1}H)$ 5.4 Hz,<br>${}^{4}J({}^{1}H, {}^{1}H)$ 1.0 Hz, 1H), 6.48 (dd,<br>${}^{3}J({}^{1}H, {}^{1}H)$ 5.4 Hz, ${}^{4}J({}^{1}H, {}^{1}H)$ 1.8 Hz,<br>1H), 4.19 (s, 1H, CH <sub>flu</sub> ), 3.74 (s, 1H,<br>CH <sub>ind</sub> ), -0.14 (s, 3H, CH <sub>3</sub> ), -0.36 (s,<br>3H, CH <sub>3</sub> ) | 145.1, 145.1, 145.1, 144.8, 144.6, 140.8<br>( $C_q$ ), 135.0, 129.8, 126.4, 125.8, 125.2.<br>124.5, 124.4, 124.3, 123.0, 121.4, 120.3.<br>43.9, 42.1 ( $CH$ ) <sup>e</sup> , -6.7, -6.8 ( $CH_3$ )                                                                                                                                           | 7.2                               |
| Me-Si-Me      | 7.95 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.3 Hz, 2H), 7.62-<br>7.54 (2H) <sup>b)</sup> , 7.47-7.21 (8H) <sup>b)</sup> , 6.11 (s,<br>1H, CH <sub>ind</sub> ), 6.04 (m, 1H, =CH), 5.20<br>(m, 2H, =CH <sub>2</sub> ), 4.13 (d, ${}^{4}J({}^{1}H, {}^{1}H)$ 1.7<br>Hz, 1H, CH <sub>au</sub> ), 3.58 (d, ${}^{4}J({}^{1}H, {}^{1}H)$ 1.7<br>Hz, 1H, CH <sub>au</sub> ), 3.39 (m, 2H, CH <sub>2</sub> ),<br>-0.16 (s, 3H, CH <sub>3</sub> ), -0.39 (s, 3H, CH <sub>3</sub> )                                                                                      | 145.5, 145.1, 145.0, 145.0, 144.5, 140.7,<br>140.3 ( $C_q$ ), 135.9 (=CH), 130.1, 126.3,<br>125.7, 124.9, 124.3, 124.3, 124.2, 123.9,<br>122.9, 120.2, 120.1, 119.5 (CH) <sup>c)</sup> , 116.0<br>(=CH <sub>2</sub> ), 42.1, 42.0 (CH), 32.4 (CH <sub>2</sub> ),<br>-5.7, -6.7 (CH <sub>3</sub> )                                            | 7.3                               |
| Me-SJ-Me      | 7.94 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 6.8 Hz, 2H), 7.60-<br>7.55 (2H) <sup>b)</sup> , 7.47-7.31 (7H) <sup>b)</sup> , 7.19 (m,<br>1H), 6.05 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 1.9 Hz, 1H,<br>CH <sub>ind</sub> ), 5.95 (m, 1H, =CH), 5.10 (m,<br>2H, =CH <sub>2</sub> ), 4.12 (s, 1H, CH <sub>flu</sub> ), 3.52 (d,<br>${}^{3}J({}^{1}H,{}^{1}H)$ 1.9 Hz, 1H, CH <sub>ind</sub> ), 2.71 (m,<br>2H, CH <sub>2</sub> ), 2.42 (m, 2H, CH <sub>2</sub> ), -0.16 (s,<br>3H, CH <sub>3</sub> ), -0.42 (s, 3H, CH <sub>3</sub> )                                      | 145.4, 145.1, 145.0, 144.7, 141.7, 140.6<br>$(C_q)^{c_1}$ , 138.5 (=CH), 129.1, 126.2, 126.2,<br>125.6, 124.8, 124.3, 124.2, 124.2, 123.8,<br>122.9, 120.1, 120.1, 119.1 (CH)^{c_1}, 114.7<br>(=CH <sub>2</sub> ), 42.1, 41.9 (CH), 32.6, 27.0<br>(CH <sub>2</sub> ), -5.6, -6.7 (CH <sub>3</sub> )                                          | 7.2                               |
| Me Si-Me      | 7.95 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 6.8 Hz, 2H), 7.65-<br>7.50 (2H) <sup>b)</sup> , 7.43-7.19 (8H) <sup>b)</sup> , 6.03 (d,<br>${}^{3}J({}^{1}H, {}^{1}H)$ 1.9 Hz, 1H, CH <sub>ind</sub> ), 5.91 (m,<br>1H, =CH), 5.08 (m, 2H, =CH <sub>2</sub> ), 4.13<br>(s, 1H, CH <sub>flu</sub> ), 3.52 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 1.9<br>Hz, 1H, CH <sub>ind</sub> ), 2.62 (m, 2H, CH <sub>2</sub> ),<br>2.20 (m, 2H, CH <sub>2</sub> ), 1.77 (m, 2H, CH <sub>2</sub> ),<br>-0.15 (m, 3H, CH <sub>3</sub> ), -0.4 (m, 3H, CH <sub>3</sub> )                  | 145.5, 145.1, 145.0, 144.8, 142.3, 140.6<br>$(C_q)^{e_1}$ , 138.8 (=CH), 129.0, 128.9, 126.3,<br>126.2, 125.6, 124.8, 124.2, 123.8, 123.0,<br>120.2, 119.2 (CH)^{e_1}, 114.7 (=CH <sub>2</sub> ), 42.2,<br>41.9 (CH), 33.7, 27.8, 27.1 (CH <sub>2</sub> ), -5.8,<br>-6.7 (CH <sub>3</sub> )                                                  | 7.2                               |
| Mensy-Me<br>9 | 7.94 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.1 Hz, 2H), 7.59<br>(2H) <sup>b)</sup> , 7.45-7.16 (8H) <sup>b)</sup> , 6.01 (s, 1H,<br>CH <sub>ind</sub> ), 5.88 (m, 1H, =CH), 5.05 (m,<br>2H, =CH <sub>2</sub> ), 4.13 (s, 1H, CH <sub>flu</sub> ), 3.52 (s,<br>1H, CH <sub>ind</sub> ), 2.60 (m, 2H, CH <sub>2</sub> ), 2.15<br>(m, 2H, CH <sub>2</sub> ), 1.67 (m, 2H, CH <sub>2</sub> ), 1.55<br>(m, 2H, CH <sub>2</sub> ), -0.17 (s, 3H, CH <sub>3</sub> ), -0.43<br>(s, 3H, CH <sub>3</sub> )                                                               | 145.5, 145.2, 145.1, 145.0, 144.9, 142.5,<br>140.6 ( $C_q$ ), 138.9 (=CH), 128.8, 126.2,<br>125.6, 124.8, 124.3, 124.2, 124.1, 123.8,<br>122.9, 120.1, 120.0, 119.2 (CH) <sup>c)</sup> , 114.4<br>(=CH <sub>2</sub> ), 42.1, 41.8 (CH), 33.7, 28.9,<br>28.0, 27.5 (CH <sub>2</sub> ), -5.7, -6.8 (CH <sub>3</sub> )                          | 7.1                               |
| Me si-Me      | 8.01-7.89 (2H) <sup>b)</sup> , 7.58-7.17 (10H) <sup>b)</sup> ,<br>6.34 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 1.8 Hz, 1H, CH <sub>ind</sub> ),<br>5.80 (m, 1H, =CH), 5.00 (m, 2H,<br>=CH <sub>2</sub> ), 4.12 (s, 1H, CH <sub>flu</sub> ), 3.57 (s, 1H,<br>CH <sub>ind</sub> ), 2.12 (m, 2H, CH <sub>2</sub> ), 1.48-1.33<br>(4H, CH <sub>2</sub> ) <sup>b)</sup> , 0.92 (m, 2H, CH <sub>2</sub> ), 0.25<br>(s, 6H, CH <sub>3</sub> ), -0.03 (s, 3H, CH <sub>3</sub> ), -0.45<br>(s, 3H, CH <sub>3</sub> )                                                      | 147.9, 145.3, 145.1, 145.0 ( $C_q$ ), 144.9<br>(CH), 141.3, 140.7 ( $C_q$ ), 139.1 (=CH).<br>126.4, 126.1, 126.0, 125.9, 124.8, 124.4.<br>124.3, 124.2, 123.3, 122.9, 122.2, 120.2.<br>120.1 (CH) <sup>c)</sup> , 114.2 (=CH <sub>2</sub> ). 45.7, 42.2<br>(CH), 33.4, 32.8, 23.6, 15.6 (CH <sub>2</sub> ).<br>-2.6, -2.8 (CH <sub>3</sub> ) | 7.1, -8.0                         |

Tabelle 2 (Continued)

|                                                                          | <sup>1</sup> H-NMR <sup>a</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>13</sup> C-NMR <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>29</sup> Si-NMR <sup>a</sup> |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Messi-Me                                                                 | 7.92 (m. 2H), 7.60-7.54 $(3H)^{b)}$ , 7.38-<br>7.16 $(12H)^{b)}$ , 5.99 (s, 1H, CH <sub>ind</sub> ), 4.09 (s, 1H, CH <sub>flu</sub> ), 3.93 (s, 2H, CH <sub>2</sub> ), 3.53 (m, 1H, CH <sub>ind</sub> ), -0.19 (s, 3H, CH <sub>3</sub> ), -0.45 (s, 3H, CH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                  | 146.0, 145.3, 145.3, 144.6, 141.8, 141.0, 140.5 ( $C_q$ ), 131.6, 129.3, 128.8, 126.7, 126.5, 126.1, 125.3, 125.0, 124.6, 124.4, 123.4, 120.6, 120.6, 120.1, 42.5, 42.4 ( $CH$ ) <sup>e)</sup> , 34.9 ( $CH_2$ ), -5.1, -6.1 ( $CH_3$ )                                                                                                                                                                                                                                      | 7.5                               |
| Me Si-Me                                                                 | 7.93 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.1 Hz, 2H), 7.57 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.3 Hz, 2H), 7.45-7.17 (8H) <sup>b</sup> ), 6.02 (s, 1H, CH <sub>ind</sub> ), 4.12 (s, 1H, CH <sub>flu</sub> ), 3.53 (s, 1H, CH <sub>ind</sub> ), 2.59 (m, 2H, CH <sub>2</sub> ), 1.70-1.38 (4H, CH <sub>2</sub> ), 0.99 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.3 Hz, 3H, CH <sub>3</sub> ), -0.20 (s, 3H, CH <sub>3</sub> ), -0.44 (s, 3H, CH <sub>3</sub> )                                                                                                                                                                                                            | 147.0, 145.9, 145.6, 145.6, 145.4, 143.2,<br>141.1 ( $C_q$ ), 129.1, 126.7, 126.0, 125.2,<br>124.7, 124.6, 124.2, 123.4, 120.6, 120.5,<br>119.6, 42.6, 42.1 ( $CH$ ) <sup>c</sup> ), 31.2, 27.8, 23.2<br>( $CH_2$ ), 14.5, -5.3, -6.3 ( $CH_3$ )                                                                                                                                                                                                                             | 7.2                               |
| $ \begin{array}{c}  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\  \\ $ | 7.92 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.1 Hz, 2H), 7.56 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.3 Hz, 2H), 7.45-7.17 (8H) <sup>b</sup> ), 6.01 (s, 1H, CH <sub>ind</sub> ), 4.12 (s, 1H, CH <sub>flu</sub> ), 3.52 (s, 1H, Ch <sub>ind</sub> ), 2.59 (m, 2H, CH <sub>2</sub> ), 1.70-1.20 (8H, CH <sub>2</sub> ) <sup>b</sup> , 0.94 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.3 Hz, 3H, CH <sub>3</sub> ), -0.20 (s, 3H, CH <sub>3</sub> ), -0.45 (s, 3H, CH <sub>3</sub> )                                                                                                                                                                                              | 145.9, 145.6, 145.5, 145.4, 143.2, 141.1<br>$(C_q)^{e_1}$ , 129.1, 126.7, 126.0, 125.2, 124.7,<br>124.6, 124.2, 123.4, 120.6, 120.5, 119.6,<br>42.6, 42.2 (CH)^{e_1}, 32.2, 29.9, 29.0, 28.1,<br>23.1 (CH <sub>2</sub> ), 14.6, -5.3, -6.3 (CH <sub>3</sub> )                                                                                                                                                                                                                | 7.2                               |
| $\frac{14/14^{\star d}}{14}$                                             | 7.84 (m, 2H), 7.70 (m, 1H), 7.50-7.01 (11H) <sup>b)</sup> , 6.96-6.86 (3H) <sup>b)</sup> , 6.67 (d, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H})$ 5.3 Hz, 1H, CH <sub>ind</sub> ), 6.61 (d, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H})$ 5.3 Hz, 1H, CH <sub>ind</sub> ), 4.48 (s), 4.42 (s, 1H, CH), 4.20 (s, 1H, CH), -0.05 (s), 0.21 (s, 3H, CH <sub>3</sub> )                                                                                                                                                                                                                                                                                                   | 144.8, 144.5, 144.4, 140.9 $(C_q)^{c_1}$ , 135.0,<br>134.3, 133.9, 130.4, 130.3, 129.6, 129.3,<br>127.1, 127.0, 126.2, 126.2, 125.7, 125.3,<br>124.5, 124.4, 124.1, 124.0, 123.4, 123.0,<br>121.5, 121.4, 120.1, 120.0, 43.1, 43.0,<br>41.6, 41.1 $(CH)^{c_1}$ , -8.4, -9.0 $(CH_3)$                                                                                                                                                                                         | 0.7, -0.3                         |
| $\frac{15/15^{\star d}}{15}$                                             | 7.85 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.1 Hz, 2H), 7.70-<br>7.60 (2H) <sup>b)</sup> , 7.36-7.00 (11H) <sup>b)</sup> , 6.95-<br>6.88 (2H) <sup>b)</sup> , 6.38 (s), 6.25 (s, 1H,<br>CH <sub>ind</sub> ), 6.00 (m, =CH), 5.87 (m, 1H,<br>=CH), 5.09 (m, 2H, =CH <sub>2</sub> ), 4.44 (s),<br>4.38 (s, 1H, CH), 4.05 (d, ${}^{4}J({}^{1}H, {}^{1}H)$ 1.7<br>Hz, 1H), 3.30 (m, 2H, CH <sub>2</sub> ), -0.12 (s),<br>-0.24 (s, 3H, CH <sub>3</sub> )                                                                                                                                                                                                             | 145.0, 144.7, 144.6, 144.4, 140.9, 140.8<br>$(C_q)^{c_1}$ , 135.7 (=CH), 134.2, 133.9, 132.7,<br>132.2, 129.7, 129.3, 129.1, 127.0, 126.8,<br>126.1, 126.0, 125.6, 125.6, 125.0, 124.9,<br>124.4, 124.4, 124.3, 124.2, 124.0, 123.3,<br>122.9, 120.0, 120.0, 119.9, 119.9, 119.5<br>$(CH)^{c_1}$ , 116.0, 115.8 (= $C_2$ ), 41.5, 41.3,<br>41.1, 40.9 (CH), 32.4, 32.3 (CH <sub>2</sub> ), -9.1,<br>-9.5 (CH <sub>2</sub> ).                                                 | 1.0. 0.5                          |
| $\frac{16/16^{\star d}}{16}$                                             | 7.82-7.77 (2H) <sup>b)</sup> , 7.55 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.1<br>Hz, 1H), 7.41-7.08 (11H) <sup>b)</sup> , 7.01 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.4 Hz, 1H), 6.87 (dd, ${}^{3}J({}^{1}H, {}^{1}H)$ 6.7 Hz, ${}^{4}J({}^{1}H, {}^{1}H)$ 1.8 Hz, 2H), 6.24 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 1.1 Hz), 6.18 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 1.1 Hz, 1H, CH <sub>ind</sub> ), 5.84 (m, 1H, =CH), 5.01 (m, 2H, =CH <sub>2</sub> ), 4.45 (s), 4.38 (s, 1H, CH), 4.01 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 1.6 Hz. 1H, CH), 2.52 (m, 2H, CH <sub>2</sub> ), 2.15 (m. 2H, CH <sub>2</sub> ), 1.64-1.43 (4H) <sup>b</sup> , -0.1 (s)0.3 (s, 3H, CH <sub>3</sub> ) | 145.1, 145.0, 144.5, 143.2, 143.1, 140.7<br>( $C_q$ ) <sup>e)</sup> , 138.9, 138.8 (=CH), 134.2, 133.8,<br>129.3, 129.1, 128.6, 128.1, 127.0, 126.8,<br>126.1, 126.0, 125.5, 124.9, 124.9, 124.4,<br>124.4, 124.3, 124.2, 123.8, 123.3, 122.9,<br>120.0, 119.9, 119.9, 119.8, 119.3, 119.2<br>(CH), 114.3, 114.3 (=CH <sub>2</sub> ), 41.4, 41.1,<br>41.0, 40.8 (CH), 33.6, 29.0, 28.8, 27.9,<br>27.5, 27.5 (CH <sub>2</sub> ) <sup>e1</sup> , -9.0, -9.5 (CH <sub>3</sub> ) | 0.9, 0.1                          |

Tabelle 2 (Continued)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>1</sup> H-NMR <sup>a)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>13</sup> C-NMR <sup>a)</sup>                                                                                                                                                                                                                                                                                                                                                                        | <sup>29</sup> Si-NMR <sup>a</sup> |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Ph-Si-Ph<br>17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.65-7.54 (4H) <sup>b)</sup> , 7.38 (m, 1H), 7.27-<br>7.14 (9H) <sup>b)</sup> , 7.04-6.98 (4H) <sup>b)</sup> , 6.96-6.90<br>(4H) <sup>b)</sup> , 6.78 (dd, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H})$ 5.4 Hz,<br>${}^{3}J({}^{1}\text{H},{}^{1}\text{H})$ 1.4 Hz, 1H, CH <sub>ind</sub> ), 6.71 (dd,<br>${}^{3}J({}^{1}\text{H},{}^{1}\text{H})$ 5.4 Hz, ${}^{3}J({}^{1}\text{H},{}^{1}\text{H})$ 1.4 Hz, 1H,<br>CH <sub>ind</sub> ), 4.79 (s, 1H, CH), 4.56 (s, 1H,<br>CH) | 144.9, 143.9, 143.8, 143.8, 141.1, 140.9<br>( $C_q$ ), 135.3, 135.2, 133.7, 130.8 (CH),<br>129.5 ( $C_q$ ), 129.4, 129.4 (CH), 129.1<br>( $C_q$ ), 126.7, 126.0, 125.6, 125.6, 125.2,<br>124.6, 123.9, 123.4, 121.3, 119.8, 41.9,<br>39.7 (CH) <sup>e<sub>1</sub></sup>                                                                                                                                  | -4.3                              |
| Ph-Sj-Ph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.72-7.51 (4H) <sup>b)</sup> , 7.36 (m, 1H), 7.23-<br>7.10 (10H) <sup>b)</sup> , 6.99-6.84 (8H) <sup>b)</sup> , 6.44 (d,<br>${}^{3}J({}^{1}H,{}^{1}H)$ 1.7 Hz, 2H), 5.70 (m, 1H,<br>=CH), 4.91 (m, 2H, =CH <sub>2</sub> ), 4.77 (s,<br>1H, CH), 4.45 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 1.7 Hz,<br>1H), 3.09 (m, 2H, CH <sub>2</sub> )                                                                                                                                        | 144.9, 144.6, 141.7, 141.4, 141.2 ( $C_q$ ) <sup>e)</sup> ,<br>135.6 (=CH), 135.3, 135.1, 129.3,<br>129.2, 128.7, 126.6, 125.9, 125.5, 125.4,<br>124.9, 124.6, 124.5, 123.9, 123.5, 119.7,<br>119.4 (CH) <sup>e)</sup> , 115.8 (=CH <sub>2</sub> ), 40.2, 39.6<br>(CH), 32.6 (CH <sub>2</sub> )                                                                                                          | -4.0                              |
| 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |
| $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ Ph\\ \\ \end{array}\\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$ | 7.65-7.42 (4H) <sup>b)</sup> , 7.23-6.95 (11H) <sup>b)</sup> ,<br>6.88-6.81 (4H) <sup>b)</sup> , 6.76-6.73 (3H) <sup>b)</sup> , 6.28<br>(s, 1H, CH <sub>ind</sub> ), 5.64 (m, 1H, =CH), 4.85<br>(m, 2H, =CH <sub>2</sub> ), 4.63 (s, 1H, CH), 4.31<br>(s, 1H, CH), 2.28 (m, 2H, CH <sub>2</sub> ), 1.95<br>(m, 2H, CH <sub>2</sub> )                                                                                                                                      | 145.1, 144.5, 143.9, 143.8, 143.2, 141.1,<br>141.0 (C <sub>q</sub> ), 138.2 (=CH), 135.2, 135.1<br>(CH). 129.9, 129.4 (C <sub>q</sub> ), 129.2, 129.2,<br>127.8, 126.6, 125.9, 125.5, 125.5, 125.4,<br>124.9, 124.6, 124.5, 123.9, 123.5, 119.7,<br>119.1 (CH) <sup>e)</sup> , 114.4 (=CH <sub>2</sub> ), 40.0, 39.6<br>(CH). 32.4, 27.0 (CH <sub>2</sub> )                                              | -4.2                              |
| 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7.55-7.38 (4H) <sup>b)</sup> , 7.21-6.97 (10H) <sup>b)</sup> ,<br>6.87-6.81 (4H) <sup>b)</sup> , 6.75-6.72 (4H) <sup>b)</sup> , 6.25<br>(d, ${}^{3}J({}^{1}H,{}^{1}H)$ 1.6 Hz, 1H, CH <sub>ind</sub> ), 5.65<br>(m, 1H, =CH), 4.84 (m, 2H, =CH <sub>2</sub> ),<br>4.64 (s, 1H, CH), 4.29 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 1.6<br>Hz, 1H, CH), 2.21 (m, 2H, CH <sub>2</sub> ), 1.83<br>(m, 2H, CH <sub>2</sub> ), 1.31 (m, 2H, CH <sub>2</sub> )                             | 145.3. 144.8, 143.8, 143.8, 143.6, 141.1,<br>141.0 (C <sub>q</sub> ), 138.7 (=CH), 135.2, 135.0<br>(CH), 129.9, 129.3 (C <sub>q</sub> ), 129.2, 129.2,<br>127.7, 126.6, 125.9, 125.5, 125.4, 124.9,<br>124.6, 124.5, 123.8, 123.4, 119.7, 119.2<br>(CH) <sup>e1</sup> . 114.5 (=CH <sub>2</sub> ), 39.9, 39.6 (CH),<br>33.6, 27.5, 27.0 (CH <sub>2</sub> )                                               | -4.3                              |
| $\frac{1}{21}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.65-751 (4H) <sup>b)</sup> , 7.35-7.11 (11H) <sup>b)</sup> ,<br>7.00-6.85 (8H) <sup>b)</sup> , 6.37 (s, 1H, CH <sub>ind</sub> ),<br>5.78 (m, 1H, =CH), 4.98 (m, 2H,<br>=CH <sub>2</sub> ), 4.77 (s, 1H, CH), 4.42 (d,<br>${}^{3}J({}^{1}\text{H},{}^{1}\text{H})$ 1.5 Hz, 1H, CH), 2.31 (m,<br>2H, CH <sub>2</sub> ), 2.01 (m, 2H, CH <sub>2</sub> ), 1.38-<br>1.32 (4H) <sup>b)</sup>                                                                                   | 145.3, 144.6, 143.8, 141.1, 140.9 ( $C_q$ ) <sup>e)</sup> ,<br>139.0 (=CH), 135.3, 135.1 (CH), 129.8,<br>129.4 ( $C_q$ ), 129.3, 129.2, 127.6, 126.6,<br>125.9, 125.5, 125.4, 124.9, 124.6, 124.5,<br>123.8, 123.5, 119.7, 119.2 (CH) <sup>e)</sup> , 114.3<br>(=CH <sub>2</sub> ), 39.9, 39.7 (CH), 33.6, 29.0,<br>27.9, 27.5 (CH <sub>2</sub> )                                                        | -4.2                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4.65-4.55 (4H) <sup>b)</sup> , 7.35-7.16 (10H) <sup>b)</sup> ,<br>6.99-6.85 (8H) <sup>b)</sup> , 5.80 (m, 1H, =CH),<br>4.97 (m, 2H, =CH <sub>2</sub> ), 4.80 (s, 1H, CH),<br>4.62 (s, 1H, CH), 2.02 (dd, ${}^{3}J({}^{1}H, {}^{1}H)$<br>14.0 Hz, 7.5 Hz, 2H, CH <sub>2</sub> ), 1.41-1.20<br>(4H) <sup>b)</sup> , 0.62 (m, 2H, CH <sub>2</sub> ), 0.10 (s, 3H,<br>CH <sub>3</sub> ), 0.06 (s, 3H, CH <sub>3</sub> )                                                       | 148.5. 144.8, 143.8, 143.7 ( $C_q$ ), 143.3<br>(CH). 143.0, 141.1, 140.8 ( $C_q$ ), 139.1.<br>135.2. 135.1, 134.9 (CH), 129.6 ( $C_q$ ),<br>129.4, 129.3 (CH), 129.1 ( $C_q$ ), 127.6,<br>126.7, 126.0, 125.6, 125.5, 125.0, 124.7,<br>124.5, 123.6, 123.5, 122.3, 119.8 (CH),<br>114.1 (CH <sub>2</sub> ), 43.8, 39.7 (CH), 33.4,<br>32.7, 23.3, 15.3 (CH <sub>2</sub> ), -2.9, -3.0 (CH <sub>3</sub> ) | -4.38.3                           |

Tabelle 2 (Continued)

|                               | <sup>1</sup> H-NMR <sup>a)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>13</sup> C-NMR <sup>a)</sup>                                                     | <sup>29</sup> Si-NMR <sup>a</sup> |
|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------|
|                               | 8.15-7.93 (2H) <sup>b)</sup> , 7.73-7.31 (10H) <sup>b)</sup> ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 147.8 (C <sub>q</sub> ), 146.8 (CH), 145.0, 144.5.                                    | 7.1                               |
| $\langle \mathcal{H} \rangle$ | 7.01 (m), 6.82 (m, 1H), 6.54 (m, 0.2H, $CH$ , ) 6.38 (m, 0.2H, $CH$ , ) 5.84 (m, 0.2H, CH, ) 5.84 (m, 0.2H, $CH$ , ) 5.84 (m, 0.2H, CH, ) 5.84 (m, 0.2H, $CH$ , ) 5.84 (m, 0.2H, CH, ) 5.84 (m, 0.2H, CH, ) 5.84 (m, 0.2H, CH, ) 5. | 144.5, 141.7, 140.7 ( $\mathbb{C}_{q}$ ) <sup><math>\circ</math></sup> , 138.7 (=CH). |                                   |
| Si-Me                         | $1H, =CH$ , 5.08 (m, 0.21, $CH_{ind}$ ), 5.04 (m, 1H, =CH), 5.08 (m, 2H, =CH <sub>2</sub> ), 4.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125.0, 124.3, 123.7, 122.9, 122.1, 121.2.                                             |                                   |
|                               | (s), 4.29 (s), 4.25 (s), 4.22 (s, 1H, CH),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 120.1, 119.8 (CH), 114.2 (=CH <sub>2</sub> ), 43.1.                                   |                                   |
|                               | 3.74 (s), $3.70$ (s, CH <sub>und</sub> ), $3.61$ (s, 1H,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 43.0 (CH), 41.0 (CH <sub>2</sub> ), 40.9, 40.7, 39.6                                  |                                   |
|                               | $(4H)^{b}$ 1.12 (m 2H CH <sub>2</sub> ) 0.15 (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (CH), 34.1, 33.2, 33.1, 33.0, 33.0, 32.5.<br>32 5 32 4 23 1 22 8 12 3 11 6 10 9       |                                   |
| 23/23* <sup>d)</sup>          | (411), $1.12$ (iii, $211$ , $612$ ), $0.13$ (3),<br>$0.04$ (s), $-0.20$ (s), $-0.21$ (s, $3H$ , $CH_3$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (CH <sub>2</sub> ), -7.0, -7.1, -7.2, -7.9 (CH <sub>3</sub> )                         |                                   |

<sup>a)</sup> in CDCl<sub>3</sub> (gesättigte Lösung) bei 25°C. <sup>b)</sup> Als Verschiebungsbereich angegeben wegen Resonanzüberlagerungen. <sup>c) 13</sup>C-NMR-Signale nicht vollständig separiert aufgrund von Resonanzüberlagerungen. <sup>d)</sup> Die vollständige spektroskopische Aufklärung der Isomerengemische der Ligandenvorstufen wurde nicht durchgeführt.

gering. Keinen erkennbaren Unterschied in den Molekulargewichten der Polyethylene ergibt die Substitution einer Methylgruppe gegen nur eine Phenylgruppe am Brückenelement (siehe Tabellen 5 und 6).

Die starke Abschwächung des 'Phenyleffekts' bei der Substitution des Brückenkohlenstoffatoms durch Silicium weist auf einen sterischen Effekt hin, da Si-verbrückte Komplexe nicht so gespannt sind wie  $C_1$ -verbrückte.

Die Schmelzenthalpien und Schmelztemperaturen lassen keinen Einfluß des Brückensubstituenten erkennen. Die Schmelztemperaturen liegen im Bereich von 134.0–141.0°C, die Schmelzenthalpien bei 120 ± 10 J g<sup>-1</sup> ( $\equiv$  Kristallisationsgrade von 38–45% [23]) und sind damit tendenziell um 10 J g<sup>-1</sup> höher als bei den C<sub>1</sub>-verbrückten Komplexen [8] (Abb. 9).

Die Abb. 10 und 11 verdeutlichen den Einfluß der Kettenlänge eines  $\omega$ -Alkenylsubstituenten in der 3-Position des Indenylidenliganden auf die Polymerisationsaktivitäten der jeweiligen Katalysatoren und die Molekulargewichte der erhaltenen Polymeren. Die Daten der isopropylidenverbrückten Fluorenyliden-Indenyliden-Komplexe und der diphenylsilylenverbrückten Fluorenyliden-Indenyliden-Komplexe sind in den folgenden Abbildungen aufgetragen.

In entsprechenden Metallocendichloridkomplexen befindet sich die 3-Position des Indenylidenliganden unterhalb eines Chloratoms und damit in unmittelbarer Nähe der Koordinationsphäre des Metalls. Die gegenüberliegende Seite ist durch den anellierten Benzoring des Fluorenylidenliganden abgeschirmt. Für die wachsende Polymerkette bleibt vorzugsweise nur die 'benzofreie' Seite übrig, so daß man von einer 'chain-stationary-insertion' [22] ausgehen kann. Die unsubstituierten Metallocenkomplexe besitzen nach der Aktivierung die geringsten Polymerisationsaktivitäten. Durch die Einführung eines Allylsubstituenten in die Position 3 des Indenylliganden erhöht sich die Aktivität gegenüber dem unsubstituierten Komplex. Mit Butenyl- und Pentenylsubstituenten konnten die Aktivitäten nochmals gesteigert werden, während die Einführung eines Hexenylrestes zu einem Abfall der Polymerisationsaktivität führt. Die Molekulargewichte der erhaltenen Polyethylene hängen ebenfalls von der Kettenlänge des  $\omega$ -Alkenylsubstituenten ab, wobei mit den hexenylsubstituierten Komplexen/MAO die höchsten Werte erreicht wurden.

## 3. Experimenteller Teil

## 3.1. NMR-Spektroskopie

Zur Aufnahme von NMR-Spektren standen die Geräte Jeol JNM-EX 270 E, Bruker ARX 250 und Bruker DRX 500 zur Verfügung. Die Proben wurden unter Argon abgefüllt und routinemäßig in CDCl<sub>3</sub> bei 25°C gemessen. Die chemischen Verschiebungen beziehen sich bei den <sup>1</sup>H-NMR-Spektren auf das Restprotonensignal des Lösungsmittels ( $\delta = 7.24$  ppm für CHCl<sub>3</sub>, bei den <sup>13</sup>C-NMR-Spektren auf das Lösungsmittelsignal ( $\delta = 77.0$  ppm für CDCl<sub>3</sub> und bei den <sup>29</sup>Si-NMR-Spektren auf TMS extern ( $\delta = 0.0$  ppm).

## 3.2. Massenspektroskopie

Routinemessungen erfolgten an einem VARIAN MAT CH7-Gerät (Direkteinlaßystem, Elektronenstoßionisation 70 eV). GC/MS-Spektren wurden an einem Varian 3700-Gaschromatographen, gekoppelt mit einem Varian MAT 312-Massenspektrometer, aufgenommen.



Schema 2. Allgemeine Synthese von Tetraorganylsilanen.



Abb. 3. Synthese der Verbindung 23/23\*.

### 3.3. Gaschromatographie

Zur Analyse organischer Verbindungen wurde ein Gaschromatograph Carlo Erba HRGC mit Flammenionisationsdetektor verwendet. Der Gaschromatograph war mit einer 30 m langen J&W Fused-Silica-Säule (DB1, Filmdicke 0.25 µm) ausgerüstet. Als Trägergas diente Helium; der Fluß durch die Säule betrug 3.8 ml min<sup>-1</sup>, Split 1:30, Septumspülung 1.3 ml min<sup>-1</sup>. Folgendes Temperaturprogramm wurde routinemäßig angewendet: 3 min bei 50°C (Startphase), 5 K min<sup>-1</sup> (Aufheizphase), 15 min bei 310°C (Plateauphase). Die Retensionszeit wurde in Sekunden angegeben.

## 3.4. Synthese von 9-Fluorenyldi(methyl)chlorsilan (1)

2.06 g (120 mmol) Fluorenyllithium werden zu einer Lösung aus 23.3 g (180 mmol) Dimethyldichlorsilan in 700 ml Pentan gegeben und über Nacht gerührt. Das Reaktionsgemisch wird über Natriumsulfat filtriert, der Rückstand auf der Fritte dreimal mit 150 ml Pentan gewaschen. Das Filtrat wird auf 150 ml eingeengt und bei  $-30^{\circ}$ C kristallisiert. Die hellgelben Kristalle werden mit Pentan gewaschen. Ausbeute: 24.8 g (80%).

## 3.5. Synthese von 9-Fluorenylmethylphenylchlorsilan (2)

2.06 g (120 mmol) Fluorenyllithium werden zu einer Lösung aus 29.3 ml (180 mmol) Dimethyldichlorsilan in 700 ml Pentan gegeben und über Nacht gerührt. Das Reaktionsgemisch wird über Natriumsulfat filtriert, der Rückstand dreimal mit 150 ml Pentan gewaschen. Das Filtrat wird auf 150 ml eingeengt und bei  $-30^{\circ}$ C kristallisiert. Die hellgelben Kristalle werden mit Pentan gewaschen. Ausbeute: 30.8 g (80%). GC: 2350 s.

## 3.6. Synthese von 9-Fluorenyldi(phenyl)chlorsilan (3)

2.06 g (120 mmol) Fluorenyllithium werden zu einer Lösung aus 23.3 g (180 mmol) Diphenyldichlorsilan in 700 ml Pentan gegeben und über Nacht gerührt. Das Lösungsmittel wird eingedampft, der Rückstand in Diethylether gelöst, die Lösung über Natriumsulfat filtriert und auf 150 ml eingeengt. Die Kristallisation erfolgt bei  $-30^{\circ}$ C. Ausbeute: 36.8 g (80%).

# 3.7. Synthese von 9-Fluorenyl-5-hexenylmethylchlorsilan (4)

Eine Suspension aus 1.03 g (60.2 mmol) Fluorenyllithium in 100 ml Pentan wird mit 11.8 g (60.2 mmol) Hexenylmethyldichlorsilan versetzt. Das Reaktionsgemisch wird über Natriumsulfat filtriert und das Lösungsmittel eingedampft. Dieses Rohprodukt (rötliches Öl) wurde für die weitere Reaktion eingesetzt. Ausbeute (gaschromatographisch bestimmt): 90%. GC: 2330 s.

## 3.8. Allgemeine Synthesevorschrift für die dimethylsilylenverbrückten Ligandenvorstufen 5–13

10 mmol des jeweiligen  $\omega$ -alkenyl-bzw. alkylsubstituierten Indenderivates in 60 ml Diethylether werden mit 6.25 ml *n*-Butyllithium (1.6 M Lösung in Hexan) versetzt und mindestens vier Stunden gerührt. Zu dieser Lösung werden bei  $-78^{\circ}$ C 2.58 g (10 mmol) 9-Fluorenyldimethylchlorsilan gegeben und über Nacht





M = Zr; R = Me: 39 Ph: 40 M = Hf; R = Me: 41

Abb. 5. Übersicht über die dargestellten Metallocendichoridkomplexe.



Abb. 6. 250.13 MHz  $^1\mathrm{H}\text{-}\mathrm{NMR}\text{-}\mathrm{Spektrum}$  von 36 (CDCl<sub>3</sub>, 25°C).

gerührt. Nach der Hydrolyse mit 50 ml Wasser und Trocknen über Natriumsulfat wird die organische Phase eingedampft. Das Rohprodukt wird zur Reinigung in Pentan gelöst und die Lösung über Kieselgel filtriert. Ausbeute: 80–90%.

9-Fluorenyl-1-indenyldimethylsilan (5): GC 2730 s. 9-Fluorenyl-1-(3-allyl)indenyldimethylsilan (6): gelbes Öl. GC 2910 s. MS: m/e 378 (M<sup>+</sup>). 9-Fluorenyl-1-(3-but-3-enyl)indenyldimethylsilan (7): GC 2970 s. MS: m/e 392 (M<sup>+</sup>).

9-Fluorenyl-1-(3-pent-4-enyl)indenyldimethylsilan (8): GC 3120 s. MS: m/e 406 (M<sup>+</sup>).

9-Fluorenyl-1-(3-hex-5-enyl)indenyldimethylsilan (9): gelb-grünliches Öl. GC 3190 s. MS: m/e 420 (M<sup>+</sup>). 9-Fluorenyl-1-(3-hex-5-enyldimethylsilyl)indenyldi-

methylsilan (10): gelbes Öl. GC 3300 s. MS: m/e 478 (M<sup>+</sup>).



Abb. 7. 62.9 MHz *J*-moduliertes  ${}^{13}C{}^{1}H$ -NMR-Spektrum von **36** (CDCl<sub>3</sub>, 25°C). Quartäre und CH<sub>2</sub>-Kohlenstoffatome (negative Signale) bzw. CH- und CH<sub>3</sub>-Kohlenstoffatome (positive Signale) sind in Phase; S = CDCl<sub>3</sub>.

9-Fluorenyl-1-(3-benzyl)indenyldimethylsilan (11): GC 3385 s. MS: m/e 428 (M<sup>+</sup>).

9-Fluorenyl-1-(3-butyl)indenyldimethylsilan (12): GC 2999 s. MS: m/e 394 (M<sup>+</sup>).

9-Fluorenyl-1-(3-hexyl)indenyldimethylsilan (13): GC 3242 s.

## 3.9. Allgemeine Synthesevorschrift für die methylphenylsilylenverbrückten Ligandenvorstufen 14/14\*-16/16\*

10 mmol des jeweiligen  $\omega$ -alkenylsubstituierten Indenderivates in 60 ml Diethylether werden mit 6.25 ml *n*-Butyllithium (1.6 M Lösung in Hexan) versetzt und mindestens vier Stunden gerührt. Zu dieser Lösung werden 3.21 g (10 mmol) 9-Fluorenylmethylphenylchlorsilan gegeben und über Nacht gerührt. Nach der Hydrolyse mit 50 ml Wasser und dem Trocknen über Natriumsulfat wird die organische Phase eingedampft. Das Rohprodukt wird zur Reinigung in Pentan gelöst und die Lösung über Kieselgel filtriert. Ausbeute: 80– 90%.

9-Fluorenyl-1-indenylmethylphenylsilan (14/14\*): GC 3180 s.

9-Fluorenyl-1-(3-allyl)indenylmethylphenylsilan (15/ 15\*): GC 3360 s. MS: m/e 440 (M<sup>+</sup>). 9-Fluorenyl-1-(3-hex-5-enyl)indenylmethylphenylsilan (16/16\*): GC 3600 s.

## 3.10. Allgemeine Synthesevorschrift für die di(phenyl)silylenverbrückten Ligandenvorstufen 17–22

10 mmol des jeweiligen  $\omega$ -alkenylsubstituierten Indenderivates in 60 ml Diethylether werden mit 6.25 ml *n*-Butyllithium (1.6 M Lösung in Hexan) versetzt und vier Stunden gerührt. Zu dieser Lösung werden 3.83 g (10 mmol) 9-Fluorenyldi(phenyl)chlorsilan gegeben und über Nacht gerührt. Nach der Hydrolyse mit 50 ml Wasser und dem Trocknen über Natriumsulfat wird die organische Phase eingeengt. Das Produkt fällt als weißes Pulver aus. Ausbeute: 60–70%.

9-Fluorenyl-1-indenyldiphenylsilan (17): MS: m/e 466 (M<sup>+</sup>).

9-Fluorenyl-1-(3-allyl)indenyldiphenylsilan (18): MS: m/e 502 (M<sup>+</sup>). Schmp.: 162–164°C.

9-Fluorenyl-1-(3-but-3-enyl)indenyldiphenylsilan (19): MS: m/e 516 (M<sup>+</sup>).

#### Tabelle 3

Vergleich der <sup>13</sup>C-NMR-Signale der quartären Kohlenstoffatome C(9) und C(10) in Si-verbrückten Komplexen mit entsprechenden Signalen in unverbrückten Komplexen.

|                         | CI-Zr<br>CI-Zr | CI-Zr | CI-Zr<br>CI | Me si 10<br>Me lo 2r -Cl<br>Me lo 2r -Cl | Ph-S-27-Cl<br>Ph-S-10-Zr-Cl |
|-------------------------|----------------|-------|-------------|------------------------------------------|-----------------------------|
|                         | [12]           | [12]  | [13]        | 27                                       | 37                          |
| δ <sup>13</sup> C (C9)  | -              | 96.9  | 94.6        | 65.8                                     | 62.4                        |
| δ <sup>13</sup> C (C10) | 110.8          | -     | -           | 84.2                                     | 79.8                        |



Schema 3. Allgemeine Synthese der Metallacyclen 45-47.

9-Fluorenyl-1-(3-pent-4-enyl)indenyldiphenylsilan (20): MS: m/e 530 (M<sup>+</sup>).

9-Fluorenyl-1-(3-hex-5-enyl) indenyldiphenylsilan (21): MS: m/e 544 (M<sup>+</sup>): Schmp.: 152–154°C.

9 - Fluorenyl - 1 - (3 - hex - 5 - enyldimethylsilyl)indenyldi - (phenyl)silan (22): MS: m/e 603 (M<sup>+</sup>). Schmp.: 119–121°C.

## 3.11. Synthese von 9-Fluorenyl-5-hexenyl-1-indenylmethylsilan (23/23\*)

Zu einer Lösung von 9.8 ml (84 mmol) Inden in 100 ml Diethylether und 10 ml HMPT werden bei  $-78^{\circ}$ C langsam 52.5 ml (84 mmol) *n*-Butyllithium gegeben und fünf Stunden bei Raumtemperatur gerührt. Zu diesem

#### Tabelle 4 NMR-Da

| NMR-Daten der Si-verbrückten Metallocendichlorid | lkomplexe 24/24*-44 und der Metallacyclen 45-47 |
|--------------------------------------------------|-------------------------------------------------|
|--------------------------------------------------|-------------------------------------------------|

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <sup>1</sup> H-NMR <sup>a)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <sup>13</sup> C-NMR <sup>a)</sup>                                                                                                                                                                                                                                                                                                                                         | <sup>29</sup> Si-NMR <sup>a)</sup> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 24/24* <sup>f)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8.02 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.8 Hz, 1H), 7.91 (d,<br>${}^{3}J({}^{1}H, {}^{1}H)$ 7.8 Hz, 1H), 7.83 (d,<br>${}^{3}J({}^{1}H, {}^{1}H)$ 7.7 Hz, 1H), 7.80-6.90 (m,<br>9H), 6.76 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 3.2 Hz, 1H,<br>CH <sub>ind</sub> ), 5.92 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 3.2 Hz, 1H,<br>CH <sub>ind</sub> ), 5.82 (m, 1H, =CH), 5.00 (m,<br>2H, =CH <sub>2</sub> ), 2.21 (m, 2H, CH <sub>2</sub> ), 1.95-<br>1.65 (6H, CH <sub>2</sub> ), 1.49 (s, 3H, CH <sub>3</sub> )                                                                                   | 145.5, 144.9, 137.8 ( $\mathbb{C}_q$ ) <sup>e)</sup> , 137.2 (=CH),<br>134.2, 132.2, 129.7, 129.1, 128.4, 128.3,<br>127.9, 126.4, 126.2, 126.0, 125.9, 125.7,<br>123.8, 121.1 (CH), 115.3 (=CH <sub>2</sub> ), 41.8,<br>39.1, 33.3, 33.0, 28.6, 27.8 (CH <sub>2</sub> ), 21.4,<br>21.0, 19.8, 15.8 (CH <sub>3</sub> ) <sup>e)</sup>                                       | -12.8                              |
| Me s d<br>Me s d<br>25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.09 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.8 Hz, 1H), 8.01 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.8 Hz, 1H), 7.69-7.56 (3H) <sup>d)</sup> , 7.47-7.37 (2H) <sup>d)</sup> , 7.28-7.23 (2H) <sup>d)</sup> , 7.16-7.08 (3H) <sup>d)</sup> , 6.77 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 3.3 Hz, 1H, CH <sub>ind</sub> ), 5.92 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 3.3 Hz, 1H, CH <sub>ind</sub> ), 1.64 (s, 3H, CH <sub>3</sub> ), 1.23 (s, 3H, CH <sub>3</sub> )                                                                                                                                        | 145.1, 140.4, 140.1, 133.1, 129.8 ( $C_q$ ) <sup>c)</sup> ,<br>127.6, 126.8, 126.6, 126.3, 125.8, 125.7,<br>125.6, 125.2, 125.1, 125.0, 124.9, 124.6,<br>124.0, 123.8, 119.5, 116.1, 114.9 (CH),<br>105.8 (CH), 85.2 ( $C_{q-ind}$ ), 65.7 ( $C_{q-flu}$ ),<br>0.8, 0.5 (CH <sub>3</sub> )                                                                                | -13.4                              |
| Photo City of | 8.32-8.29 (2H) <sup>d)</sup> , 8.18-8.16 (2H) <sup>d)</sup> , 8.04<br>(d, ${}^{3}J({}^{1}H,{}^{1}H)$ 8.3 Hz, 1H), 7.97 (d,<br>${}^{3}J({}^{1}H,{}^{1}H)$ 8.3 Hz, 1H), 7.77-6.72<br>(16H) <sup>d)</sup> , 6.12 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 3.3 Hz, 1H,<br>CH <sub>ind</sub> ), 5.88 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 3.3 Hz, 1H,<br>CH <sub>ind</sub> )                                                                                                                                                                                                                           | 135.0, 134.4 (CH), 133.8, 133.7, 133.2 (C <sub>q</sub> ), 131.1, 130.9 (CH), 130.1 (C <sub>q</sub> ), 129.3, 129.0 (CH), 128.9 (C <sub>q</sub> ), 128.8, 128.3 (CH), 127.8 (C <sub>q</sub> ), 127.5, 127.2, 126.6, 126.0, 125.7, 125.2, 124.8, 123.9, 123.4, 116.6 (CH), 83.2 (C <sub>q-ind</sub> ), 63.1 (C <sub>q-flu</sub> )                                           | -25.4                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.02 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.0 Hz, 1H), 7.94 (d,<br>${}^{3}J({}^{1}H, {}^{1}H)$ 8.0 Hz, 1H), 7.69 (d,<br>${}^{3}J({}^{1}H, {}^{1}H)$ 8.4 Hz, 1H), 7.60-7.51 (3H) <sup>d</sup> ,<br>7.41-7.09 (5H) <sup>d</sup> , 6.88 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.0<br>Hz, 1H), 5.79 (m, 1H, =CH), 5.62 (s,<br>1H, CH <sub>ind</sub> ), 4.92 (m, 2H, =CH <sub>2</sub> ), 3.43<br>(m, 2H, CH <sub>2</sub> ), 1.50 (s, 3H, CH <sub>3</sub> ), 1.21<br>(s, 3H, CH <sub>3</sub> )                                                                                                     | 135.9 (=CH), 132.4, 130.5, 130.0 ( $C_q$ ),<br>128.6, 128.5 (CH), 128.1, 127.6, 127.5,<br>127.5 ( $C_q$ ), 126.7, 126.4, 126.3, 125.9,<br>125.7, 125.3, 125.1, 124.6, 123.9, 123.7<br>(CH), 116.0 (=CH <sub>2</sub> ), 115.6 (CH <sub>ind</sub> ),<br>84.2, 65.9 ( $C_q$ ), 32.9 (CH <sub>2</sub> ), 1.0, 0.7<br>(CH <sub>3</sub> )                                       | -13.7                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8.02 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.5 Hz, 1H), 7.94 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.5 Hz, 1H), 7.69 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.4 Hz, 1H), 7.60-7.51 (3H) <sup>d</sup> ), 7.41-7.20 (4H) <sup>d</sup> ), 7.15-7.09 (2H) <sup>d</sup> ), 6.91-6.85 (m, 1H), 5.72 (m, 1H, =CH), 5.60 (s, 1H, CH <sub>ind</sub> ), 4.92 (m, 2H, =CH <sub>2</sub> ), 2.83 (m, 1H, CH <sub>2</sub> ), 2.66 (m, 1H, CH <sub>2</sub> ), 2.22 (m, 2H, CH <sub>2</sub> ), 1.50 (s, 3H, CH <sub>3</sub> ), 1.21 (s, 3H, CH <sub>3</sub> )                                                        | 137.6 (=CH), 132.3, 130.4, 129.9,<br>129.7, 128.5 (C <sub>q</sub> ), 128.5, 128.4 (CH),<br>128.0, 127.5 (C <sub>q</sub> ), 126.5, 126.3, 126.2,<br>125.8, 125.6, 125.2, 125.0, 124.5, 123.9,<br>123.6, 115.2 (CH), 115.1 (=CH <sub>2</sub> ), 83.8<br>(C <sub>q-find</sub> ), 65.8 (C <sub>q-flu</sub> ), 33.9, 27.9 (CH <sub>2</sub> ),<br>-0.6, -0.7 (CH <sub>3</sub> ) | -13.7                              |
| Der Contraction of the second | 8.02 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.3 Hz, 1H), 7.93 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.7 Hz, 1H), 7.71-7.51 (4H) <sup>d)</sup> , 7.39-7.08 (6H) <sup>d)</sup> , 6.87 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.7 Hz, 1H), 5.72 (m, 1H, = <b>CH</b> ), 5.57 (s, 1H, C <b>H</b> <sub>ind</sub> ), 4.92 (m, 2H, = <b>CH</b> <sub>2</sub> ), 2.71 (m, 1H, C <b>H</b> <sub>2</sub> ), 2.58 (m, 1H, C <b>H</b> <sub>2</sub> ), 2.00 (m, 2H, C <b>H</b> <sub>2</sub> ), 1.53 (m, 2H, C <b>H</b> <sub>2</sub> ), 1.49 (s, 3H, C <b>H</b> <sub>3</sub> ), 1.20 (s, 3H, C <b>H</b> <sub>3</sub> ) | 138.2 (=CH), 132.3, 130.4, 130.4, 129.9<br>(C <sub>q</sub> ), 128.5, 128.4 (CH), 128.0, 127.5<br>(C <sub>q</sub> ), 126.4, 126.3, 126.2, 125.8, 125.6,<br>125.2, 125.0, 124.5, 123.9, 123.6, 115.1<br>(CH), 114.7 (=CH <sub>2</sub> ), 83.8 (C <sub>q-ind</sub> ), 65.8<br>(C <sub>q-flu</sub> ), 33.5, 29.2, 27.9 (CH <sub>2</sub> ), 0.9, 0.7<br>(CH <sub>3</sub> )     | -13.7                              |

Tabelle 4 (Continued)

| · · · · · · · · · · · · · · · · · · ·                                                                                               | <sup>1</sup> H-NMR <sup>a)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>13</sup> C-NMR <sup>a)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>29</sup> Si-NMR <sup>a</sup> |
|-------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Me s - C<br>Me s - C<br>- C<br>- C<br>- C<br>- C<br>- C<br>- C<br>- C<br>- C<br>- C | 8.02 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.3 Hz, 1H), 7.93 (d,<br>${}^{3}J({}^{1}H, {}^{1}H)$ 7.7 Hz, 1H), 7.71-7.51 (4H) <sup>d</sup> ,<br>7.39-7.08 (6H) <sup>d</sup> , 6.87 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.7<br>Hz, 1H), 5.72 (m, 1H, =CH), 5.57 (s,<br>1H, CH <sub>ind</sub> ), 4.90 (m, 2H, =CH <sub>2</sub> ), 2.71<br>(m, 1H, CH <sub>2</sub> ), 2.53 (m, 1H, CH <sub>2</sub> ), 1.98<br>(m, 2H, CH <sub>2</sub> ), 1.49 (s, 3H, CH <sub>3</sub> ), 1.42-<br>1.31 (4H) <sup>d</sup> , 1.21 (s, 3H, CH <sub>3</sub> )                                                                                                | 138.7 (=CH), 132.4, 130.8, 130.8, 130.8, 130.5, 130.0 (C <sub>q</sub> ), 128.6, 128.5 (CH), 128.1, 127.6 (C <sub>q</sub> ), 126.5, 126.4, 126.2, 125.9, 125.7, 125.3, 125.1, 124.6, 124.0, 123.7 (CH), 115.2 (CH <sub>ind</sub> ), 114.4 (=CH <sub>2</sub> ), 83.7 (C <sub>q-ind</sub> ), 65.6 (C <sub>q-flu</sub> ), 33.5, 29.6, 28.7, 28.3 (CH <sub>2</sub> ), 1.0, 0.77 (CH <sub>3</sub> )                                                                                                                                                                                                 | -13.8                             |
|                                                                                                                                     | 8.01 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.3 Hz, 1H), 7.92 (d,<br>${}^{3}J({}^{1}H, {}^{1}H)$ 8.3 Hz, 1H), 7.71 (d,<br>${}^{3}J({}^{1}H, {}^{1}H)$ 8.6 Hz, 1H), 7.64-7.56 (3H) <sup>d</sup> ),<br>7.37-7.23 (4H) <sup>d</sup> ), 7.10 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.0<br>Hz, 1H), 7.09 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.0 Hz, 1H),<br>6.86 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.7 Hz, 1H), 5.78 (m,<br>1H, =CH), 5.64 (s, 1H, CH <sub>ind</sub> ), 4.91 (m,<br>2H, =CH <sub>2</sub> ), 3.48 (m, 1H, CH <sub>2</sub> ), 3.34<br>(m, 1H, CH <sub>2</sub> ), 1.48 (s, 3H, CH <sub>3</sub> ), 1.21<br>(s, 3H, CH <sub>3</sub> ) | 135.9 (=CH), 131.7, 129.3 ( $C_q$ ), 128.3,<br>128.2 (CH), 128.1, 127.9, 127.2 ( $C_q$ ),<br>126.5 (CH), 126.4 ( $C_q$ ), 126.0, 125.9,<br>125.5, 125.4 (CH), 125.1 ( $C_q$ ), 125.0,<br>124.8, 124.2, 123.6, 123.4 (CH), 115.9<br>(=CH <sub>2</sub> ), 113.4 (CH <sub>ind</sub> ), 85.5 ( $C_{q-ind}$ ), 65.0<br>( $C_{q-flu}$ ), 32.7 (CH <sub>2</sub> ), 0.8, 0.6 (CH <sub>3</sub> )                                                                                                                                                                                                       | -14.3                             |
|                                                                                                                                     | 8.00 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.3 Hz, 1H), 7.90 (d,<br>${}^{3}J({}^{1}H, {}^{1}H)$ 8.3 Hz, 1H), 7.70 (d,<br>${}^{3}J({}^{1}H, {}^{1}H)$ 8.6 Hz, 1H), 7.63-7.55 (3H) <sup>d</sup> ),<br>7.32-7.21 (4H) <sup>d</sup> ), 7.12-7.06 (2H) <sup>d</sup> ), 6.85<br>(t, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.7 Hz, 1H), 5.72 (m, 1H,<br>=CH), 5.60 (s, 1H, CH <sub>ind</sub> ), 4.92 (m, 2H,<br>=CH <sub>2</sub> ), 2.73 (m, 1H, CH <sub>2</sub> ), 2.54 (m,<br>1H, CH <sub>2</sub> ), 1.99 (m, 2H, CH <sub>2</sub> ), 1.48 (s,<br>3H, CH <sub>3</sub> ), 1.47-1.30 (4H) <sup>d</sup> ), 1.21 (s, 3H,<br>CH <sub>3</sub> )       | 138.7 (=CH), 131.8, 129.4, 128.5 (C <sub>q</sub> ),<br>128.3 (CH), 128.2, 128.1, 127.3, 126.6<br>(C <sub>q</sub> ), 126.4, 126.1, 125.7, 125.6, 125.1,<br>124.9, 124.3, 123.8, 123.6 (CH) <sup>c)</sup> , 114.4<br>(=CH <sub>2</sub> ), 113.1 (CH <sub>ind</sub> ), 85.1 (C <sub>q-ind</sub> ), 65.0<br>(C <sub>q-flu</sub> ), 33.5, 29.6, 28.8, 28.2 (CH <sub>2</sub> ), 0.9,<br>0.8 (CH <sub>3</sub> )                                                                                                                                                                                      | -14.3                             |
| Phe-Si 7-Cl<br>33/33* <sup>f)</sup>                                                                                                 | 8.11-8.01 (4H) <sup>d)</sup> , 7.77 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 8.6<br>Hz, 1H), 7.67-7.59 (4H) <sup>d)</sup> , 7.54-7.14<br>(7H) <sup>d)</sup> , 7.10-6.80 (2H) <sup>d)</sup> , 6.70 (d,<br>${}^{3}J({}^{1}H,{}^{1}H)$ 8.6 Hz, 1H), 5.78 (m, 1H,<br>=CH), 5.68 (s, 1H, CH <sub>ind</sub> ), 4.95 (m, 2H,<br>=CH <sub>2</sub> ), 3.48 (m, 1H, CH <sub>2</sub> ), 3.23 (m,<br>1H, CH <sub>2</sub> ), 1.59 (s, 1.5H, CH <sub>3</sub> ), 1.26 (s,<br>1.5H, CH <sub>3</sub> )                                                                                                                                               | 138.6 (=CH), 135.1 (C <sub>q</sub> ), 134.8 (CH),<br>134.4 (C <sub>q</sub> ), 134.2 (CH), 131.7, 131.5<br>(C <sub>q</sub> ), 131.0 (CH), 131.0 (C <sub>q</sub> ), 130.7<br>(CH), 130.4, 129.2, 129.1 (C <sub>q</sub> ), 129.1,<br>128.9, 128.7, 127.7, 127.5 (CH), 127.4<br>(C <sub>q</sub> ), 127.0, 126.6, 126.5, 126.2, 126.0,<br>125.4, 125.3, 125.2, 124.9, 124.8, 124.5,<br>124.3, 124.1, 123.8, 123.7, 116.5 (CH),<br>116.2 (=CH <sub>2</sub> ), 116.1 (CH), 81.6 (C <sub>q-ind</sub> ),<br>63.0 (C <sub>q-ful</sub> ), 33.0, 33.0, (CH <sub>2</sub> ), 1.9, 1.4<br>(CH <sub>3</sub> ) | -18.8                             |
| D. D.<br>Phe s. J = C<br>D. J<br>34/34* <sup>f)</sup>                                                                               | 8.24 (m, 1H), 8.07-7.93 (3H) <sup>d)</sup> , 7.75-<br>7.58 (5H) <sup>d)</sup> , 7.55-6.82 (7H) <sup>d)</sup> , 6.71-6.64<br>(m, 1H), 5.71 (m, 1H, = <b>CH</b> ), 5.68 (s,<br><b>CH</b> <sub>ind</sub> ), 5.64 (s, 1H, <b>CH</b> <sub>ind</sub> ), 4.94 (m,<br>2H, = <b>CH</b> <sub>2</sub> ), 2.74 (m, 2H, <b>CH</b> <sub>2</sub> ), 2.03<br>(m, 2H, <b>CH</b> <sub>2</sub> ), 1.59 (s, 1.5H, <b>CH</b> <sub>3</sub> ),<br>1.29 (s, 1.5H, <b>CH</b> <sub>3</sub> ), 1.70-1.25 (4H) <sup>d)</sup>                                                                                                                          | 138.6 (=CH), 135.1 ( $C_q$ ), 134.8 (CH),<br>134.4 ( $C_q$ ), 134.2 (CH), 131.7, 131.5<br>( $C_q$ ), 131.0 (CH), 131.0 ( $C_q$ ), 130.7<br>(CH), 130.4, 129.2, 129.1 ( $C_q$ ), 129.1,<br>128.9, 128.7, 127.7, 127.5 (CH), 127.4<br>( $C_q$ ), 127.0, 126.6, 126.5, 126.2, 126.0,<br>125.4, 125.3, 125.2, 124.9, 124.8, 124.5,<br>124.3, 124.1, 123.8, 123.7 (CH), 116.5,<br>115.5 (CH <sub>ind</sub> ), 114.4, 114.3 (=CH <sub>2</sub> ),<br>81.6, 63.0 ( $C_q$ ), 33.4, 33.3, 29.8, 29.1,<br>28.8, 28.7, 28.3, 28.3 (CH <sub>2</sub> ), 1.9, 1.4<br>(CH <sub>3</sub> )                      | -18.8                             |

Tabelle 4 (Continued)

| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <sup>1</sup> H-NMR <sup>a)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>13</sup> C-NMR <sup>a)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                        | <sup>29</sup> Si-NMR <sup>a</sup> |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Phr st 27-CC<br>Phr st 27-CC<br>35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.33 (m, 2H), 8.16 (m, 2H), 8.04 (d,<br>${}^{3}J({}^{1}H,{}^{1}H)$ 8.75 Hz, 1H), 7.97 (d,<br>${}^{3}J({}^{1}H,{}^{1}H)$ 8.4 Hz, 1H), 7.61-7.52 (7H) <sup>d</sup> ),<br>7.42-7.30 (4H) <sup>d</sup> ), 7.14 (m, 1H), 6.96<br>(m, 2H), 6.81-6.74 (2H) <sup>d</sup> ), 5.86 (m, 1H,<br>=CH), 5.79 (s, 1H, CH <sub>und</sub> ), 5.03 (m, 2H,<br>=CH <sub>2</sub> ), 3.50 (m, 1H, CH <sub>2</sub> ), 3.45 (m,<br>1H, CH <sub>2</sub> )                                                                                                                                                                                                            | 136.0 (=CH), 135.0, 134.4 (CH), 134.1,<br>133.9, 133.0 ( $C_q$ ), 131.1, 130.8 (CH),<br>130.1, 129.8, 129.1, 129.0 ( $C_q$ ), 129.0,<br>128.9, 128.6, 128.2 (CH), 127.7, 127.6<br>( $C_q$ ), 126.9, 126.7, 126.5, 126.3, 126.1,<br>125.1, 124.6, 124.4, 124.0 (CH), 116.9<br>(CH <sub>ind</sub> ), 116.2 (=CH <sub>2</sub> ), 79.9 ( $C_{q-ind}$ ), 62.1<br>( $C_{q-flu}$ ), 33.1 (CH <sub>2</sub> )                                                                     | -25.7                             |
| Ph-S 27-Cl<br>Phr-S - 27-Cl<br>2<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.32 (m, 2H), 8.15 (m, 2H), 8.04 (d,<br>${}^{3}J({}^{1}H,{}^{1}H)$ 8.4 Hz, 1H), 7.97 (d,<br>${}^{3}J({}^{1}H,{}^{1}H)$ 8.4 Hz, 1H), 7.65-7.51 (6H) <sup>d</sup> ,<br>7.42-7.35 (2H) <sup>d</sup> , 7.34-7.29 (2H) <sup>d</sup> ,<br>7.17-7.11 (2H) <sup>d</sup> , 6.98-6.90 (2H) <sup>d</sup> ,<br>6.79-6.70 (2H) <sup>d</sup> , 5.78 (m, 1H, = <b>CH</b> ),<br>5.77 (s, 1H, <b>CH</b> <sub>ind</sub> ), 5.00 (m, 2H,<br>= <b>CH</b> <sub>2</sub> ), 2.89 (m, 1H, <b>CH</b> <sub>2</sub> ), 2.72 (m,<br>1H, <b>CH</b> <sub>2</sub> ), 2.28 (m, 2H, <b>CH</b> <sub>2</sub> )                                                                  | 137.7 (=CH), 134.5, 134.3 (CH), 134.1,<br>133.9, 132.8 (C <sub>q</sub> ), 131.0, 130.7 (CH),<br>129.9, 129.6, 128.9 (C <sub>q</sub> ), 128.9, 128.8,<br>128.5, 128.1 (CH), 127.2 (C <sub>q</sub> ), 126.8,<br>126.7, 126.6, 126.4, 126.2, 126.0, 125.0,<br>124.5, 124.3, 123.8 (CH), 116.6 (CH <sub>ind</sub> ),<br>115.2 (=CH <sub>2</sub> ), 79.5 (C <sub>q-ind</sub> ), 62.5 (C <sub>q-flu</sub> ),<br>34.0, 27.9 (CH <sub>2</sub> )                                  | -25.7                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8.31 (m, 2H), 8.14 (m, 2H), 8.04 (d,<br>${}^{3}\mathcal{J}({}^{1}\mathrm{H},{}^{1}\mathrm{H})$ 8.4 Hz, 1H), 7.97 (d,<br>${}^{3}\mathcal{J}({}^{1}\mathrm{H},{}^{1}\mathrm{H})$ 8.4 Hz, 1H), 7.60-7.52 (6H) <sup>d</sup> ,<br>7.36-7.29 (4H) <sup>d</sup> , 7.20-7.05 (2H) <sup>d</sup> ,<br>6.97-6.81 (2H) <sup>d</sup> , 6.79-6.72 (2H) <sup>d</sup> , 5.77<br>(m, 1H, = <b>CH</b> ), 5.74 (s, 1H, <b>CH</b> <sub>ind</sub> ), 4.89<br>(m, 2H, = <b>CH</b> <sub>2</sub> ), 2.80 (m, 1H, <b>CH</b> <sub>2</sub> ),<br>2.61 (m, 1H, <b>CH</b> <sub>2</sub> ), 2.07 (m, 2H, <b>CH</b> <sub>2</sub> ),<br>1.66 (m, 2H, <b>CH</b> <sub>2</sub> ) | 138.2 (=CH), 135.2, 135.0, 134.9, 134.3<br>(CH), 134.1, 134.0, 132.9 (C <sub>q</sub> ), 131.0,<br>130.7 (CH), 130.7 130.0, 129.7, 128.9<br>(C <sub>q</sub> ), 128.9, 128.8, 128.5, 128.1 (CH),<br>127.5 (C <sub>q</sub> ), 126.7, 126.7, 126.6, 126.5,<br>126.4, 126.1, 125.9, 125.0, 124.5, 124.3,<br>123.9, 119.7 (CH), 116.5 (=CH), 114.8<br>(=CH <sub>2</sub> ), 79.8 (C <sub>q-ind</sub> ), 62.4 (C <sub>q-flu</sub> ). 55.6,<br>29.3, 28.0 (CH <sub>2</sub> )      | -25.7                             |
| Phr s Zz -Cl<br>Phr s Zz -Cl<br>OT -Cl<br>38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.32 (m, 2H), 8.18 (m, 2H), 8.05 (d,<br>${}^{3}J({}^{1}H,{}^{1}H)$ 8.3 Hz, 1H), 7.79 (d,<br>${}^{3}J({}^{1}H,{}^{1}H)$ 8.3 Hz, 1H), 7.61-7.59 (7H) <sup>d</sup> ),<br>7.41-7.31 (4H) <sup>d</sup> ), 7.13 (m, 1H), 6.95<br>(m, 2H), 6.81-6.73 (2H) <sup>d</sup> ), 5.79 (m, 1H,<br>=CH), 5.77 (s, 1H, CH <sub>ind</sub> ), 4.94 (m, 2H,<br>=CH <sub>2</sub> ), 2.80 (m, 1H, CH <sub>2</sub> ), 2.60 (m,<br>1H, CH <sub>2</sub> ), 2.05 (m, 2H, CH <sub>2</sub> ), 1.62-<br>1.36 (4H) <sup>d</sup>                                                                                                                                            | 138.7 (=CH), 134.9, 134.3 (CH), 134.2,<br>134.0, 132.9 ( $C_q$ ), 131.0 (CH), 130.9<br>( $C_q$ ), 130.8 (CH), 130.0, 129.8, 129.0<br>( $C_q$ ), 128.9, 128.8, 128.5, 128.2 (CH),<br>127.6 ( $C_q$ ), 126.8, 126.7, 126.6, 126.5,<br>126.2, 125.9, 125.1, 124.6, 124.4, 124.0<br>(CH), 116.5 (CH <sub>ind</sub> ), 114.4 (=CH <sub>2</sub> ), 79.4<br>( $C_{q-ind}$ ), 62.1 ( $C_{q-flu}$ ), 33.4, 29.6, 28.8,<br>28.4 (CH <sub>2</sub> )                                 | -25.7                             |
| Merson and a second sec | 7.97 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.3 Hz, 1H), 7.87 (d,<br>${}^{3}J({}^{1}H, {}^{1}H)$ 8.3 Hz, 2H), 7.75-7.48 (4H) <sup>d)</sup> ,<br>7.38-7.08 (4H) <sup>d)</sup> , 6.97-6.94 (t, ${}^{3}J({}^{1}H, {}^{1}H)$<br>6.7 Hz, 1H), 5.88 (s, 1H, CH <sub>ind</sub> ), 5.72<br>(m, 1H, =CH), 4.91 (m, 2H, =CH <sub>2</sub> ),<br>1.95 (m, 2H, CH <sub>2</sub> ), 1.49 (s, 3H, CH <sub>3</sub> ),<br>1.24 (s, 3H, CH <sub>3</sub> ), 1.33-1.13 (4H,<br>CH <sub>2</sub> ) <sup>d)</sup> , 0.67 (m, 2H, CH <sub>2</sub> ), 0.25 (s, 3H,<br>CH <sub>3</sub> ), 0.17 (s, 3H, CH <sub>3</sub> )                                                       | 139.5 ( $C_q$ ), 139.0 (=CH), 131.9, 129.9,<br>129.1, 129.0 ( $C_q$ ), 128.8 (CH), 128.5<br>( $C_q$ ), 128.0, 127.0, 126.9, 126.7, 126.2,<br>126.0, 125.9, 125.6, 125.2, 124.3, 124.0<br>(CH), 123.2 ( $C_q$ ), 121.7 (CH <sub>ind</sub> ), 114.1<br>(=CH <sub>2</sub> ), 91.4 ( $C_{q-ind}$ ), 65.9 ( $C_{q-flu}$ ), 33.4,<br>32.5, 23.3, 16.0 (CH <sub>2</sub> ), 0.8, 0.4, -2.4,<br>-2.9 (CH <sub>3</sub> )                                                           | -4.413.7                          |
| Physical Strength of the stren | 8.29 (m, 2H), 8.16 (m, 2H), 7.98 (d, ${}^{3}\mathcal{J}({}^{1}\text{H},{}^{1}\text{H})$ 8.3 Hz, 1H), 7.89 (d, ${}^{3}\mathcal{J}({}^{1}\text{H},{}^{1}\text{H})$ 8.3 Hz, 1H), 7.61-7.51 (7H) <sup>d</sup> ), 7.38-7.27 (4H) <sup>d</sup> ), 7.13 (m, 2H), 6.96-6.72 (4H) <sup>d</sup> ), 6.03 (s, 1H, CH <sub>ind</sub> ), 5.74 (m, 1H, =CH), 4.90 (m, 2H, =CH <sub>2</sub> ), 1.97 (m, 2H, CH <sub>2</sub> ), 1.35-1.25 (4H, CH <sub>2</sub> ) <sup>d</sup> ), 0.73 (m, 2H, CH <sub>2</sub> ), 0.30 (s, 3H, CH <sub>3</sub> ), 0.20 (s, 3H, CH <sub>3</sub> )                                                                               | 139.9 ( $C_q$ ), 139.0 (=CH), 134.9, 134.4<br>(CH), 134.1, 131.7 ( $C_q$ ), 133.9, 130.8<br>(CH), 129.8, 129.7, 129.6 ( $C_q$ ), 129.0,<br>128.9, 128.6 (CH), 128.2 ( $C_q$ ), 127.8,<br>127.3, 127.1, 127.0, 126.9, 126.7, 126.3,<br>125.8, 125.0, 124.9, 124.1 (CH), 124.0<br>( $C_q$ ), 122.8 (CH <sub>ind</sub> ), 114.1 (=CH <sub>2</sub> ), 87.5<br>( $C_q$ -ind), 62.0 ( $C_q$ -flu), 33.4, 32.5, 23.4,<br>15.9 (CH <sub>2</sub> ), -2.4, -2.8 (CH <sub>3</sub> ) | -4.325.7                          |

Tabelle 4. (Continued)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>1</sup> H-NMR <sup>a)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <sup>13</sup> C-NMR <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                               | <sup>29</sup> Si-NMR <sup>a</sup> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Harss Hr-Cl<br>Merss Hr-Cl<br>Sirver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.95 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.2 Hz, 1H), 7.86 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.2 Hz, 1H), 7.78 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.2 Hz, 1H), 7.78 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.7 Hz, 1H), 7.68 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.7 Hz, 1H), 7.57 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.2 Hz, 1H), 7.57 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.2 Hz, 1H), 7.57 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.2 Hz, 1H), 7.47 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.7 Hz, 1H), 7.35 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.2 Hz, 1H), 7.35 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.0 Hz, 1H), 5.89 (s, 1H, CH <sub>ind</sub> ), 5.71 (m, 1H, =CH), 4.89 (m, 2H, =CH <sub>2</sub> ), 1.93 (m, 2H, CH <sub>2</sub> ), 1.46 (s, 3H, CH <sub>3</sub> ), 1.24 (s, 3H, CH <sub>3</sub> ), 1.33-1.13 (4H) <sup>d1</sup> , 0.67 (m, 2H, CH <sub>2</sub> ), | 139.5 ( $C_q$ ), 139.0 (=CH), 131.9, 129.9,<br>129.1, 129.0 ( $C_q$ ), 128.8 (CH), 128.5<br>( $C_q$ ), 128.0, 127.0, 126.9, 126.7, 126.2,<br>126.0, 125.9, 125.6, 125.2, 124.3, 124.0<br>(CH). 123.2 ( $C_q$ ), 121.7 (CH <sub>ind</sub> ). 114.1<br>(=CH <sub>2</sub> ). 93.5 ( $C_{q-ind}$ ), 65.9 ( $C_{q-flu}$ ). 33.3,<br>32.5, 23.3, 16.0 (CH <sub>2</sub> ), 0.8, 0.4, -2.4,<br>-2.9 (CH <sub>3</sub> ) | -4.4, -14.3                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.25 (s, 3H, CH <sub>3</sub> ), 0.17 (s, 3H, CH <sub>3</sub> )<br>8.03 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.6 Hz, 1H), 7.96 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.6 Hz, 1H), 7.70-6.90<br>(15H) <sup>d</sup> , 5.62 (s, 1H, CH <sub>ind</sub> ), 4.15 (AB, 1H, CH <sub>2</sub> ), 3.87 (AB, 1H, CH <sub>2</sub> ), 1.49 (s, 3H, CH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>n.b</b> . <sup>b,g</sup>                                                                                                                                                                                                                                                                                                                                                                                    | -13.7                             |
| 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |
| Here's Art of the second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 8.02 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.6 Hz, 1H), 7.94 (d,<br>${}^{3}J({}^{1}H, {}^{1}H)$ 8.6 Hz, 1H), 7.69 (d,<br>${}^{3}J({}^{1}H, {}^{1}H)$ 8.7 Hz, 1H), 7.63-7.52 (3H) <sup>d)</sup> ,<br>7.41-7.20 (4H) <sup>d)</sup> , 7.11 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.4<br>Hz, 2H), 6.87 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.4 Hz, 2H),<br>5.58 (s, 1H, CH <sub>ind</sub> ), 2.72 (m, 1H, CH <sub>2</sub> ),<br>2.54 (m, 1H, CH <sub>2</sub> ), 1.49 (s, 3H, CH <sub>3</sub> ),<br>1.42 (m, 2H, CH <sub>2</sub> ), 1.28 (m, 2H, CH <sub>2</sub> ),<br>1.21 (s, 3H, CH <sub>3</sub> ), 0.83 (t, ${}^{3}J({}^{1}H, {}^{1}H)$ 7.1<br>Hz, 3H, CH <sub>3</sub> )                                                                                                                                                                    | 132.4, 131.1, 130.5, 130.0 ( $C_q$ ), 128.6,<br>128.5 (CH), 128.1, 127.7 ( $C_q$ ), 126.5,<br>126.3, 126.2, 125.9, 125.7, 125.3, 125.1<br>(CH), 124.8 ( $C_q$ ), 124.6, 124.1, 123.7<br>(CH), 115.3 (CH <sub>ind</sub> ), 83.7 ( $C_{q-ind}$ ), 65.9<br>( $C_{q-flu}$ ), 32.3, 28.2, 22.7 (CH <sub>2</sub> ), 13.9,<br>0.99, 0.75 (CH <sub>3</sub> )                                                           | -13.8                             |
| Mersur Jar -Cl<br>Mersur Jar -Cl<br>Jar -Cl                                                                                                                                                                                                                                                                      | 8.01 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 8.5 Hz, 1H), 7.73 (d, ${}^{3}J({}^{1}H,{}^{1}H)$ 8.1 Hz, 1H), 7.59-7.50 (3H) <sup>d)</sup> , 7.40-7.25 (4H) <sup>d)</sup> , 7.10 (t, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.4 Hz, 2H), 6.87 (t, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.4 Hz, 1H), 5.57 (s, 1H, CH <sub>ind</sub> ), 2.69 (m, 1H, CH <sub>2</sub> ), 2.54 (m, 1H, CH <sub>2</sub> ), 1.48 (s, 3H, CH <sub>3</sub> ), 1.48-1.25 (8H) <sup>d)</sup> , 1.21 (s, 3H, CH <sub>3</sub> ), 0.81 (t, ${}^{3}J({}^{1}H,{}^{1}H)$ 7.1 Hz, 3H, CH <sub>3</sub> )                                                                                                                                                                                                                                                                                       | n.b. <sup>b)</sup>                                                                                                                                                                                                                                                                                                                                                                                             | -13.8                             |
| Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si | 7.92 (m, 2H), 7.52-7.37 $(3H)^{d}$ , 7.28-<br>7.11 $(3H)^{d}$ , 7.09-6.97 $(3H)^{d}$ , 6.82 (m,<br>1H), 5.50 (s, 1H, CH <sub>ind</sub> ), 2.83 (m, 2H,<br>CH <sub>2</sub> ), 2.34 (m, 2H, CH <sub>2</sub> ), 1.55 (m, 1H,<br>CH <sub>2</sub> ), 1.29 (s, 3H, CH <sub>3</sub> ), 1.03 (s, 3H,<br>CH <sub>3</sub> ), 0.35 (m, 1H, CH <sub>2</sub> ), -2.24 (m, 1H,<br>CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                      | 129.6, 129.1 ( $C_q$ ), 128.8 (CH), 127.3<br>( $C_q$ ), 127.0, (CH), 127.9, 127.3, 126.6<br>( $C_q$ ), 126.4, 126.2, 125.5 (CH), 125.3<br>( $C_q$ ), 125.0, 124.7, 124.5 (CH), 124.4<br>( $C_q$ ), 124.3, 124.2, 124.0, 122.9, 122.8,<br>120.3, 119.2 (CH), 114.6 (CH), 86.8<br>( $C_{q-ind}$ ), 67.1 ( $C_{q-flu}$ ), 42.5, 27.7 (CH <sub>2</sub> ),<br>1.6, 1.2 (CH <sub>3</sub> )                           | -13.4                             |
| Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si<br>Me-si | 8.02 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.4 Hz, 1H), 7.94 (d, ${}^{3}J({}^{1}H, {}^{1}H)$ 8.4 Hz, 1H), 7.63-7.44 (3H) <sup>d</sup> ), 7.41-7.27 (3H) <sup>d</sup> ), 7.25-7.00 (3H) <sup>d</sup> ), 6.82 (m, 1H), 5.45 (s, 1H, CH <sub>ind</sub> ), 2.82 (m, 2H, CH <sub>2</sub> ), 1.80 (m, 2H, CH <sub>2</sub> ), 1.40 (s, 3H, CH <sub>3</sub> ), 1.27 (m, 1H, CH <sub>2</sub> ), 1.06 (m, 3H, CH <sub>3</sub> ), 0.35 (m, 1H, CH <sub>2</sub> ), -2.17 (m, 1H, CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                           | 131.6. 130.8, 129.2, 128.7 ( $C_q$ ), 127.9, 127.2 (CH), 126.5 ( $C_q$ ), 125.2, 125.1, 125.0. 124.9, 124.6, 124.3, 124.2, 124.1, 123.7 (CH), 121.6 ( $C_q$ ), 113.9 (CH <sub>ind</sub> ). 82.8 ( $C_{q-ind}$ ), 67.2 (CH <sub>2</sub> ), 65.6 ( $C_{q-flu}$ ). 28.4, 28.1, 25.3 (CH <sub>2</sub> ), 1.1, 0.8 (CH <sub>3</sub> )                                                                               | -13.4                             |

Tabelle 4. (Continued)

| · · ·                      | <sup>1</sup> H-NMR <sup>a)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                    | <sup>13</sup> C-NMR <sup>a</sup>                                                                                                                                                                                                                                                                                                                                                                  | <sup>29</sup> Si-NMR* |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| <b>0 0 0 0 0 0 0 0 0 0</b> | 8.03-7.94 (m, 2H), 7.63-7.44 (3H) <sup>d)</sup> ,<br>7.41-7.00 (6H) <sup>d)</sup> , 6.82 (m, 1H), 5.62 (s,<br>1H, CH <sub>ind</sub> ), 2.86 (m, 1H, CH <sub>2</sub> ), 1.80<br>(m, 2H, CH <sub>2</sub> ), 1.40 (s, 3H, CH <sub>3</sub> ), 1.27<br>(m, 1H, CH <sub>2</sub> ), 1.06 (m, 3H, CH <sub>3</sub> ), 0.74<br>(m, 1H, CH <sub>2</sub> ), 0.33 (m, 1H, CH <sub>2</sub> ), -0.05<br>(m, 1H, CH <sub>2</sub> ), -1.17 (m, 1H, CH <sub>2</sub> ) | 131.6, 130.8, 129.0 ( $C_q$ ), 129.0 (CH),<br>128.7 ( $C_q$ ), 128.1, 128.0 (CH), 127.9,<br>127.3, 126.6 ( $C_q$ ), 125.3, 125.2, 125.1,<br>125.1, 125.0, 124.7, 124.4, 124.2, 123.9,<br>123.4, 119.7, 119.4 (CH), 115.5 ( $C_q$ ),<br>114.6 (CH <sub>ind</sub> ), 82.8 ( $C_{q-ind}$ ), 65.6 ( $C_{q-flu}$ ),<br>64.3, 27.3, 25.2, 25.1, 22.9 (CH <sub>2</sub> ), 1.0,<br>0.7 (CH <sub>3</sub> ) | n.b. <sup>b)</sup>    |

<sup>a)</sup> in CDCl<sub>3</sub> (gesättigte Lösung) bei 25°C  $\pm$  1°C; <sup>b)</sup> n. b. nicht bestimmt. <sup>c) 13</sup>C nicht vollständig separiert aufgrund von Resonanzüberlagerungen. <sup>d)</sup> Als Verschiebungsbereich angegeben wegen Resonanzüberlagerungen. <sup>e)</sup> keine weiteren C<sub>q</sub> detektiert. <sup>f)</sup> Die vollständige spektroskopische Aufklärung der Isomerengemische der Metallocenkomplexe wurde nicht durchgeführt. <sup>g)</sup> Komplex schwerlöslich in CDCl<sub>3</sub>.

Reaktionsgemisch werden bei  $-78^{\circ}$ C 16.8 g (56 mmol) 9-Fluorenyl-5-hexenylmethylchlorsilan gegeben. Die Lösung wird über Nacht gerührt, mit 50 ml Wasser hydrolysiert, zweimal mit Wasser nachgewaschen, die organische Schicht eingedampft. Das Produkt wird nach der Säulenchromatographie mit Pentan als Laufmittel als rötliches Öl gewonnen. Ausbeute: 9.1 g (40%). GC: 3060 s. MS: m/e 406 (M<sup>+</sup>).

# 3.12. Allgemeine Synthesevorschrift für die verbrückten Metallocenkomplexe 23–43

1.0 g der entsprechenden Ligandenvorstufe wird in 40 ml Diethylether geö lst und mit zwei Äquivalenten *n*-Butyllithium (1.6 M in Hexan) mindestens acht Stunden bei Raumtemperatur gerührt. Dann wird ein Äquivalent Zirconium- bzw. Hafniumtetrachlorid zugegeben und über Nacht gerührt. Die Aufarbeitung richtet sich nach der Löslichkeit des Produktes: bei etherlöslichen Komplexen kann direkt vom entstandenen Lithiumchlorid abfiltriert werden. Bei schwer löslichen Komplexen wird entweder das Lösungsmittel abgezogen und der Rückstand mit Methylenchlorid extrahiert oder man filtriert den Komplex über Natriumsulfat, wechselt das Schlenkrohr, löst das Produkt mit Methylenchlorid oder Toluol von der Fritte und zieht dann das Lösungsmittel ab. Ausbeute: 40–70%.

 $\eta^{3}$ -(9-Fluorenyliden)-5-hexenyl- $\eta^{3}$ -(1-indenyliden)methylsilan-zirconiumdi chlorid (**24**): rote Kristalle. MS: m/e566 (M<sup>+</sup>).

 $\eta^{3}$ -(9-Fluorenyliden)- $\eta^{3}$ -(1-indenyliden)dimethylsilanzirconiumdichlorid (**25**): rote Kristalle.

 $\eta^3$ -(9-Fluorenyliden)- $\eta^3$ -(1-indenyliden)diphenylsilanzirconiumdichlorid (**26**): rote Kristalle. MS: m/e 624 (M<sup>+</sup>).  $\eta^{3}$ -(9-Fluorenyliden)- $\eta^{3}$ -[1-(3-allyl)indenyliden]dimethylsilan-zirconiumdichlorid (27): rote Kristalle. MS: m/e 538 (M<sup>+</sup>).

 $\eta^{3}$ -(9-Fluorenyliden)- $\eta^{3}$ -[1-(3-but-3-enyl)indenyliden] dimethylsilan-zirconiumdichlorid (28): rote Kristalle. MS: m/e 552 (M<sup>+</sup>).

 $\eta^{3}$ -(9-Fluorenyliden)- $\eta^{3}$ -[1-(3-pent-4-enyl)indenyliden] dimethylsilan-zirconiumdichlorid (**29**): rote Kristalle. MS: m/e 566 (M<sup>+</sup>).

 $\eta^{3}$ -(9-Fluorenyliden)- $\eta^{3}$ -[1-(3-hex-5-enyl)indenyliden]dimethylsilan-zirconiumdichlorid (**30**): rote Kristalle. MS: m/e 580 (M<sup>+</sup>). $\eta^{3}$ -(9-Fluorenyliden)- $\eta^{3}$ -[1-(3-allyl)indenyliden]dimethylsilan-hafniumdichlorid (**31**): gelbe Kristalle.

 $\eta^{3}$ -(9-Fluorenyliden)- $\eta^{3}$ -[1-(3-hex-5-enyl)indenyliden]dimethylsilan-hafniumdichlorid (**32**): gelbe Kristalle.

 $\eta^{3}$ -(9-Fluorenyliden)- $\eta^{3}$ -[1-(3-allyl)indenyliden]methylphenylsilan-zirconiumdichlorid (**33/33\***): rote Kristalle. MS: m/e 600 (M<sup>+</sup>).

 $\eta^{3}$ -(9-Fluorenyliden)- $\eta^{3}$ -[1-(3-hex-5-enyl)indenyliden] methylphenylsilan-zirconiumdichlorid (**34**/**34**\*): rote Kristalle. MS: *m/e* 642 (M<sup>+</sup>).

 $\eta^{3}$ -(9-Fluorenyliden)- $\eta^{3}$ -[1-(3-allyl)-indenyliden]diphenylsilan-zirconiumdichlorid (**35**): rote Kristalle. MS: m/e662 (M<sup>+</sup>).

 $\eta^{3}$ -(9-Fluorenyliden)- $\eta^{3}$ -[1-(3-but-3-enyl)indenyliden]diphenylsilan-zirconiumdichlorid (**36**): rote Kristalle. MS: m/e 676 (M<sup>+</sup>).

 $\eta^{3}$ -(9-Fluorenyliden)- $\eta^{3}$ -[1-(3-pent-4-enyl)indenyliden] diphenylsilan-zirconiumdichlorid (37): rote Kristalle.

 $\eta^{3}$ -(9-Fluorenyliden)- $\eta^{3}$ -[1-(3-hex-5-enyl)indenyliden] diphenylsilan-zirconiumdichlorid (38): rote Kristalle. MS: m/e 704 (M<sup>+</sup>).

 $\eta^{3}$ -(9-Fluorenyliden)- $\eta^{3}$ -[1-(3-hex-5-enyldimethylsilyl)indenyliden]dimethylsilan-zirconiumdichlorid (**39**): rote Kristalle. MS: m/e 638 (M<sup>+</sup>).

| Tabelle 5    |                             |         |                 |
|--------------|-----------------------------|---------|-----------------|
| Übersicht de | r Polymerisationsreaktionen | und der | Polymeranalytik |

| Komplex<br>(+ MAO)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Μ <sub>η</sub><br>[g/mol] | Aktivität <sup>a)</sup><br><u>[g] PE</u><br>[mmol] Zr·h<br>$(T_{i,max})[^{\circ}C]^{b)}$ | Δ <b>H</b> <sub>m</sub> <sup>c)</sup><br>[J/g] | α <sup>d)</sup><br>[%] | T <sup>e)</sup><br>[°C] | Co-p. <sup>f)</sup> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------|------------------------------------------------|------------------------|-------------------------|---------------------|
| Jone Start                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 270 000                   | 29 500<br>(62.0)                                                                         | 112.21                                         | 39                     | 135.94                  | ++                  |
| 24/24*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 310 000                   | 8 700                                                                                    | n. b.                                          | n. b.                  | n. b.                   |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 350 000                   | 38 200<br>(62.8)                                                                         | 124.28                                         | 43                     | 134.01                  | 0                   |
| Me>si 21-Ci<br>Me>si 21-Ci<br>28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 330 000                   | 57 000<br>(60.9)                                                                         | 120.28                                         | 41                     | 137.77                  | +                   |
| Me>s<br>Me>s<br>29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 380 000                   | 90 000 <sup>g)</sup><br>(75.4)                                                           | 130.77                                         | 45                     | 141.05                  | ++                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 385 000                   | 26 100<br>(60.3)                                                                         | 110.62                                         | 38                     | 138.22                  | ++                  |
| Mest 22-Cl<br>Mest 22-Cl | 380 000                   | 46 000<br>(74.8)                                                                         | 131.06                                         | 45                     | 136.26                  | ++                  |

Tabelle 5 (Continued)

| Komplex                                                                                | $\overline{\mathbf{M}}_{\eta}$ | Aktivität <sup>a)</sup>      | $\Delta \mathbf{H}_{m}^{c)}$ | $\alpha^{d)}$ | T <sub>m</sub> <sup>e)</sup> | Co-p. <sup>f)</sup> |
|----------------------------------------------------------------------------------------|--------------------------------|------------------------------|------------------------------|---------------|------------------------------|---------------------|
|                                                                                        | [g/mol]                        | <u>[g] PE</u><br>[mmol] Zr∙h | [J/g]                        | [%]           | [°C]                         |                     |
|                                                                                        |                                | $(T_{i,max})[^{\circ}C]^{b}$ |                              |               |                              |                     |
|                                                                                        | 240 000                        | 138 300 <sup>h)</sup>        | 135.56                       | 47            | 137.69                       |                     |
| Me>Si Zr <cl< th=""><th></th><th>(84.9)</th><th></th><th></th><th></th><th></th></cl<> |                                | (84.9)                       |                              |               |                              |                     |
| Q 42                                                                                   |                                |                              |                              |               |                              | -                   |
| $\bigcirc - \bigcirc$                                                                  | 400 000                        | 33 300                       | 120.70                       | 41            | 140.18                       | _                   |
| Me Si Zr Cl                                                                            |                                | (68.0)                       |                              |               |                              |                     |
| ~ <sup>43</sup>                                                                        |                                |                              |                              |               |                              |                     |
| $\overline{O}$                                                                         | 420 000                        | 39 200 <sup>i)</sup>         | 115.82                       | 40            | 139.68                       | _                   |
|                                                                                        |                                | (81.7)                       |                              |               |                              |                     |
|                                                                                        |                                |                              |                              |               |                              |                     |
|                                                                                        | 300 000                        | 9 400                        | 115.56                       | 40            | 137.05                       | ++                  |
| Me Si Zr Cl                                                                            |                                | (59.9)                       |                              |               |                              |                     |
| Ø 45                                                                                   |                                |                              |                              |               |                              |                     |
|                                                                                        | 270 000                        | 60 100 <sup>g)</sup>         | 138.49                       | 48            | 135.96                       | ++                  |
| Me Si Zr Cl                                                                            |                                | (59.2)                       |                              |               |                              |                     |
| <b>46</b>                                                                              |                                |                              |                              |               |                              |                     |
| $\bigcirc -\bigcirc$                                                                   | 300 000                        | 8 200                        | 125.83                       | 43            | 134.39                       | ++                  |
| Me Si Zr Cl                                                                            |                                | (60.1)                       |                              |               |                              |                     |
|                                                                                        |                                |                              |                              |               |                              |                     |
| 47                                                                                     |                                |                              |                              |               |                              |                     |

<sup>a)</sup> [Zr]:[Al] = 1:17000; <sup>b)</sup> T<sub>i,max</sub> = maximale Innentemperatur des Polymerisationsreaktors; <sup>c)</sup> als Schmelzenthalpien  $\Delta H_m$ wurden die Werte des zweiten Heizlaufs der DSC angegeben; <sup>d)</sup> siehe [23]; <sup>e)</sup> als Schmelzpunkt wurde das Maximum des Schmelzpeaks des zweiten Heizlaufs der DSC gewählt; <sup>f)</sup> Copolymerisierbarkeit: Fähigkeit des Katalysators. sich in die Polymerkette zu copolymerisieren: ++ = sehr gut, + = gut, 0 = befriedigend, - = keine; <sup>g)</sup> Polymerisationsdauer 30 min; <sup>h)</sup> Polymerisationsdauer 15 min; <sup>i)</sup> Polymerisationsdauer 45 min; n.b. = nicht bestimmt.

| Tabelle 6   |     |                           |     |     |            |        |
|-------------|-----|---------------------------|-----|-----|------------|--------|
| Übersicht d | ler | Polymerisationsreaktionen | und | der | Polymerana | ılytik |

| Komplex                                | ¯ <b>M</b> η<br>[g/mol] | Aktivität <sup>a)</sup><br>[g] PE<br>[mmol] Zr·h | ∆ <b>H</b> <sup>°)</sup><br>[J/g] | α <sup>d)</sup><br>[%]                | T <sub>m</sub> <sup>e)</sup><br>[°C] | Co-p. <sup>î)</sup> |
|----------------------------------------|-------------------------|--------------------------------------------------|-----------------------------------|---------------------------------------|--------------------------------------|---------------------|
|                                        |                         | $(T_{i,max})[^{\circ}C]^{b)}$                    |                                   |                                       |                                      |                     |
|                                        | 255 000                 | 21 800<br>(61.5)                                 | 108.78                            | 38                                    | 139.35                               | -                   |
| Ph⊳si<br>Me≥si<br>33/33*               | 400 000                 | 44 400<br>(64.6)                                 | 132.28                            | 46                                    | 141.04                               | +                   |
|                                        | 275 000                 | 43 100<br>(73.1)                                 | 135.31                            | 47                                    | 137.68                               | ++                  |
| 34/34*                                 |                         |                                                  |                                   | a a a a a a a a a a a a a a a a a a a |                                      |                     |
| Ph-Si<br>Ph-Si<br>Ph-Si<br>Ph-Si<br>35 | 410 000                 | 26 500<br>(60.6)                                 | 116.87                            | 40                                    | 131.13                               | +                   |
|                                        | 445 000                 | 54 700 <sup>g)</sup><br>(65.3)                   | 130.60                            | 45                                    | 140.24                               | +                   |
|                                        | 430 000                 | 82 800 <sup>h)</sup><br>(62.0)                   | 107.95                            | 37                                    | 141.01                               | ++                  |
|                                        | 480 000                 | 53 500<br>(72.0)                                 | 130.28                            | 45                                    | 135.47                               | ++                  |

Tabelle 6 (Continued)

| Komplex                                            | Μ <sub>η</sub><br>[g/mol] | Aktivität <sup>a)</sup><br><u>[g] PE</u><br>[mmol] Zr·h<br>(T <sub>i,max</sub> )[°C] <sup>b)</sup> | Δ <b>H</b> <sup>c)</sup><br>[J/g] | α <sup>d)</sup><br>[%] | T <sup>"c)</sup><br>[°C] | Co-p. <sup>f)</sup> |
|----------------------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------|------------------------|--------------------------|---------------------|
| Ph-St Zr -Cl<br>Ph-St Zr -Cl<br>Ph-St Zr -Cl<br>40 | 420 000                   | 45 800<br>(63.0)                                                                                   | 127.67                            | 44                     | 136.75                   | ++                  |

<sup>a)</sup> [Zr]:[Al] = 1:17000; <sup>b)</sup>  $T_{i,max}$  = maximale Innentemperatur des Polymerisationsreaktors; <sup>c)</sup> als Schmelzenthalpien  $\Delta H_m$  wurden die Werte des zweiten Heizlaufs der DSC angegeben; <sup>d)</sup> siehe [23]; <sup>e)</sup> als Schmelzpunkt wurde das Maximum des Schmelzpeaks des zweiten Heizlaufs der DSC gewählt; <sup>f)</sup> Copolymerisierbarkeit: Fähigkeit des Katalysators, sich in die Polymerkette zu copolymerisieren: ++ = sehr gut, + = gut, 0 = befriedigend, - = keine; <sup>g)</sup> Polymerisationsdauer 40 min; <sup>h)</sup> Polymerisationsdauer 30 min.



## <sup>a)</sup> $C_n^{=}$ : $\omega$ -Alkenylsubstituent mit der Kettenlänge n.

Abb. 9. Viscosimetrische Molekulargewichte  $\overline{M}_{\eta}$  der von den Komplextypen ( $C_{13}H_8$ –Si $Me_2$ – $C_9H_6$ – $nR'_n$ )Zr $Cl_2$ /MAO und ( $C_{13}H_8$ –Si $Ph_2$ – $C_9H_6$ – $nR'_n$ )Zr $Cl_2$ /MAO synthetisierten Polyethylene (R' = Alkenyl). <sup>a)</sup> Cn<sup>2</sup> - :  $\omega$ -Alkenylsubstituent mit der Kettenlänge n.



<sup>a)</sup>  $C_n^{=}$ :  $\omega$ -Alkenylsubstituent mit der Kettenlänge n.

Abb. 10. Polymerisationsaktivitäten der Katalysatoren und Molekulargewichte der Polyethylene in Abhängigkeit von der Länge des  $\omega$ -Alkenylsubstituenten. <sup>a)</sup>  $C_n^{2-}$ :  $\omega$ -Alkenylsubstituent mit der Kettenlänge *n*.



<sup>a)</sup>  $C_n^{=}$ :  $\omega$ -Alkenylsubstituent mit der Kettenlänge n.

Abb. 11. Polymerisationsaktivitäten der Katalysatoren und Molekulargewichte der Polyethylene in Abhängigkeit von der Länge des  $\omega$ -Alkenylsubstituenten. <sup>a)</sup>  $C_n^{2-}$ :  $\omega$ -Alkenylsubstituent mit der Kettenlänge *n*.

 $\eta^{3}$ -(9-Fluorenyliden)- $\eta^{3}$ -[1-(3-hex-5-enyldimethylsilyl) indenyliden]diphenylsilan-zirconiumdichlorid (**40**): rote Kristalle. MS: m/e 762 (M<sup>+</sup>).

 $\eta^{3}$ -(9-Fluorenyliden)- $\eta^{3}$ -[1-(3-hex-5-enyldimethylsilyl) indenyliden]dimethylsilan-hafniumdichlorid (41): gelbe Kristalle.

 $\eta^3$ -(9 - Fluorenyliden) -  $\eta^3$ -[1 - (3 - benzyl)indenyliden]dimethylsilan-zirconiumdichlorid (**42**): rote Kristalle. MS: m/e 588 (M<sup>+</sup>).

 $\eta^{3}$ -(9-Fluorenyliden)- $\eta^{3}$ -[1-(3-butyl)indenyliden]dimethylsilan-zirconiumdichlorid (**43**): rote Kristalle. MS: m/e554 (M<sup>+</sup>).

 $\eta^{3}$ -(9-Fluorenyliden)- $\eta^{3}$ -[1-(3-hexyl)indenyliden]dimethylsilan-zirconiumdichlorid (44): rote Kristalle. MS: m/e582 (M<sup>+</sup>).

## 3.13. Allgemeine Synthesevorschrift für die Metallocenkomplexe **45–47**

3.0 mmol des jeweiligen alkenylsubstituierten Metallocendichloridkomplexes und 0.79 (3.11 mmol) Lithiumaluminium-tri-*tert*-butyloxyhydrid werden in 50 ml Tetrahydrofuran gelöst und über Nacht bei Raumtemperatur gerührt. Das Lösungsmittel wird im Vakuum eingedampft und der Rückstand mit Toluol extrahiert. Je nach Löslichkeit des Komplexes enthalten die ersteren oder letzteren Fraktionen den jeweiligen Komplex, der unter Zusatz von Hexan bei  $-25^{\circ}$ C oder  $-78^{\circ}$ C auskristallisiert. Ausbeute: 20–50%.

**45**: orange Kristalle. MS: m/e 504 (M<sup>+</sup>). **46**: orange Kristalle. MS: m/e 516 (M<sup>+</sup>). **47**: orange Kristalle.

## 3.14. Untersuchungen zur Immobilisierung

Die Untersuchungen zur Selbstimmobilisierung wurden in Schlenkrohren durchgeführt. Etwa 10 mg des jeweiligen Komplexes wurden mit 10 ml MAO (30% Lösung in Toluol) aktiviert, mit 40 ml Toluol verdünnt und anschließend einem Ethylendruck von 0.4-0.6 bar ausgesetzt. Der Einbau des  $\omega$ -alkenylsubstituierten Komplexes in die Polymerketten zeigte sich an der charakteristischen Farbe des gebildeten Polymerniederschlags.

## 3.15. Durchführung der Polymerisationsversuche

#### 3.15.1. Aktivierung der Katalysatorvorstufen

Der jeweilige Metallocenkomplex wurde unter Schutzgas abgewogen (etwa  $8-12 \pm 0.1$  mg) und mit MAO aktiviert (1 ml MAO (30% in Toluol) pro mg Metallocendichloridkomplex). Die Lösung wurde mit Toluol so verdünnt, daß etwa 0.2–0.5 mg Metallocenkomplex in 1 ml Toluol gelöst waren. Davon wurde etwa 1 mg Katalysator für die Polymerisation eingesetzt. Diese Lösungen wurden innerhalb von 60 Minuten zur Polymerisation verwendet.

### 3.15.2. Polymerisation von Ethylen

In einem 1 l Büchi Laborautoklaven BEP 280 werden 500 ml Pentan, 7 ml MAO (30% in Toluol) und die entsprechende Menge Katalysatorlösung ([Zr]:[Al] 1:17 000) vorgelegt. Der Reaktor wurde auf 60°C aufgeheizt und ein konstanter Ethylendruck von 10 bar angelegt. Nach einer Stunde wurde die Polymerisation durch Ablassen des Ethylens beendet.

## 3.16. Charakterisierung der Polymerproben

### 3.16.1. Differential Scanning Calorimetry

Zur Messung der thermischen Eigenschaften der Polymerproben stand ein DSC-7 (Perkin Elmer) zur Verfügung. Die Polymerproben wurden vor der Messung im Vakuum getrocknet. Zur Ermittlung der Schmelzenthalpien wurden jeweils 3-5 mg des Polymers in Standardaluminiumpfännchen eingeschweißt und mit folgendem Temperaturprogramm gemessen: 1. Aufheizphase (20 K min<sup>-1</sup>) von 50°C bis 200°C, Abkühlphase  $(-20 \text{ Kmin}^{-1})$  auf 50°C. Aufheizphase (20 K min<sup>-1</sup>) von 50°C bis 200°C, 2. Abkühlphase  $(-20 \text{ Kmin}^{-1})$  auf 50°C. Die Temperatur wurde linear bezüglich Indium korrigiert (Schmp. 156.6°C); die Schmelzenthalpie von Indium ( $\Delta H_{\rm m} =$ 28.45 J g<sup>-1</sup>) wurde zur Kalibrierung benutzt. Für die Ermittlung des Kristallinitätsgrades  $\alpha$  wurde die Beziehung  $\alpha = \Delta H_{\rm m} / \Delta H_{\rm m}^0$  gewählt.  $\Delta H_{\rm m}$  ergibt sich aus den Daten des zweiten Heizlaufs der DSC, für  $\Delta H_m^0$  als Schmelzenthalpie für 100% kristallines Polyethylen wurden 290 J  $g^{-1}$  [23] angenommen.

#### 3.16.2. Viscosimetrie

Das viskosimetrische Molekulargewichtsmittel  $\overline{M}_{\eta}$ wurde mit einem Ubbelohde-Präzisionskapillarviskosimeter in *cis/trans* Dekalin bei 135 ± 0.1°C bestimmt. Die Proben wurden vor der Messung in verschließbare Kölbchen eingewogen und innerhalb von drei bis vier Stunden bei 140–150°C in einer genau abgemessenen Menge Dekalin gelöst. Unlösliche Bestandteile wurden heiß über Glaswolle abfiltriert. Für die Bestimmung von  $\overline{M}_{\eta}$  standen Eichkurven zur Verfügung. Zur Verringerung des Fehlers wurde jede Polymerprobe zweimal eingewogen und vermessen.

## Anerkennung

Wir danken der Phillips Petroleum Company, USA und der Deutschen Forschungsgemeinschaft für die finanzielle Unterstützung sowie der Firma Witco (Bergkamen) für die Bereitstellung von MAO.

### **Bibliographie**

- H.-H. Brintzinger, D. Fischer, R. Mülhaupt, B. Rieger, R. Waymouth, Angew. Chem. 107 (1995) 1255; Angew. Chem. Int. Ed. Engl. 34 (1995) 1143.
- [2] M. Aulbach, F. Küber, Chem. Unserer Zeit 4 (1994) 197.
- [3] P.C. Möhring, N.J. Coville, J. Organomet. Chem. 479 (1994) 1.
- [4] W. Kaminsky, M. Arnd, Adv. Polym. Sci. 127 (1997) 143.
- [5] H.G. Alt, Russ. Chem. Bull. 44 (1995) 1.
- [6] A. Razavi, L. Peters, L. Nafpliotis, J. Mol. Cat. A: Chem. 115 (1997) 129.
- [7] J. Rohrmann (Hoechst A.-G.), Eur. Pat. Appl., 1993, 528287; Chem. Abstr. 119 (1993) P271957.
- [8] H.G. Alt, M. Jung, J. Organomet. Chem. 562 (1998) 153.
- [9] S.J. Palackal, Dissertation, Universität Bayreuth, 1991.
- [10] B. Peifer, Dissertation, Universität Bayreuth, 1995.

- [11] H.G. Alt, R. Zenk, J. Organomet. Chem. 514 (1996) 113.
- [12] C. Schmid, Dissertation, Universität Bayreuth, 1996.[13] M. Schmid, H.G. Alt, J. Organomet. Chem. 525 (1996) 15.
- [14] H.G. Alt, J.S. Han, U. Thewalt, J. Organomet. Chem. 456 (1993) 89.
- [15] J. Schwartz, J.A. Labinger, Angew. Chem. 88 (1976) 402; Angew. Chem. Int. Ed. Engl. 15 (1976) 333.
- [16] J. Schwartz, Pure Appl. Chem. 52 (1980) 733.
- [17] P.C. Wailes, H. Weigold, J. Organomet. Chem. 24 (1970) 405.
- [18] P.C. Wailes, H. Weigold, A.P. Bell, J. Organomet. Chem. 43 (1972) 32.
- [19] D.W. Hart, J. Schwartz, J. Am. Chem. Soc. 96 (1974) 8115.
- [20] B. Peifer, W. Milius, H.G. Alt, J. Organomet. Chem. 7510.
- [21] A. Winter, V. Dolle, W. Spaleck (Hoechst A.-G.) Eur. Pat. Appl., 1992, 516019; Chem. Abstr. 119 (1993) P28794m.
- [22] A. Razavi, J. Atwood, Macromol. Symp. 89 (1995) 345.
- [23] G. Luft, M. Dorn, Angew. Macromol. Chem. 188 (1991) 177.
- [24] J. Mason, Multinuclear NMR, Plenum, New York, 1987.